AD-A228 827

R NAVAS
N o *j
" PR S S IR

VTS RGO STATEMENTY W7 ! . s

Task: UR20
CDRL: 0100

0
.

~

UR20--Process/Environment S L

Integration .
Ada/Xt Architecture:

Design Report e e COPY

Informal Technical Data

frecnntiogyfroridaptab cRReliable)Systor Sl

’ - ": B ‘ e : i .
‘-v . - » v. ‘ ’ :' N ' >¢ . - R

R
T

e oo

STARS-RC-01000/001/00
25 January 1990

ELECTE "
' SR
NOV141990%.

“-_.K
o i . &
K- Frod

A

e o+ e e e s o A

$- ———re. 4

REPORT DOCUMENTATION PAGE

Form Approved
OMB No 0704-0188

Pupuc reDC* NE DUrJEr TOF Ty 1CHeCTION St (NTCIMAtIOr 13 eSUMBLEd 1C Average NOur Der *esDIrse. INCIVAITS tRE LIMe TOr Feviewing INSITUCTIONS, SEAICRING €3 31~ 2 Qald SOUr (e
gatneriry ano M3INLAINING the gata neeced. anc cOmpieting ana review:ng the cctiection of information Send comments ¢
20NPCLIIN ¢ :NYOTMANICR. INCIUOING SLGFSINIONS 10T reaUCING this Duraen 10 Washington Heaaquarten Services. Directorate
Dass gt aay, Sute 1202 Arlingten VA 222024302, ana 1C the Otice ot Management and Suage: Paperwors Reduct:on Project (0704-0188). washington, DC 22503

8rQING thiy Durgen estimate Or an. StRer A30ect O thiy
ot information Operations and Reports. 1215 Jetterson

. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

25 January 1990

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Ada/Xt Architecture: Design Report

S. FUNDING NUMBERS

STARS Contract
F19628-88-D-0031

6. AUTHOR(S)

Kurt wWallnau

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Unisys Corporation
12010 Sunrise Valley Drive
Reston, VA 22091

8. PERFORMING ORGANIZATION
REPORT NUMBER

GR-7670-1107(NP)

9. SPONSORING . MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Department of the Air Force
Headquarters, Electronic Systems Division (AFSC)
Hanscom AFB, MA 01731-5000

10. SPONSORING ' MONITORING
AGENCY REPORT NUMBER

01000

11. SUPPLEMENTARY NOTES

Ada/XT Toolkit, SunOS Implementation

This report describes the design of the Process/Environment Integration

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release;
distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

architecture.

language interfaces defined in the X Toolkit
tradition (including Ada).

the Ada spec1f1catlon to the C specification.
, /

Jppm— f

N

pe

This report provides a detailed description of the Ada/Xt toolkit

The purpose of this report is to describe the Ada/Xt
architecture in terms of system~independent package specifications,

and to describe the analysis which contributed to major design decisions.
The emphasis on system-independent package specifications rather than
langvage independent specifications derives from recognition that the C

(Xt) Intrinsics definition

are nearly sufficiently language independent -- for languages in the Algol
The Ada toolkit design verifies this claim,
since there is a very close syntactic mapping of types and interfaces from

~ /

ot

14. SUBJECT TERMS
X Window System

Ada/Xt Design -

15. NUMBER OF PAGES

87
16. PRICE CODE

widgets -
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Onclassified Unclassified Unclassified SAR

25 January 1990 STARS-RC-01000/001/00

PREFACE

This document was produced by Unisys Defense Systems in support of the STARS
Prime contract under the Process Environment Integration task (UR20). This
document "Ada Xt Architecture: Design Report", type A005 (Informal Technical
Data) is provided as additional documentation for CDRL 01000, type AO14 (Ada
Package Specification/Source Code) which has is an electronic delivery to the
STARS repository.

This document and source code were produced by Unisys Defense Systems at the
Valley Forge Research facility in Paoli, PA and have been reviewed and approved
by the following Unisys personnel:

Prepared by: Kurt Wallneu
Unisys Corporation

Reviewed by: Teri F. Payton, System Architect

Approved by: @JZQ 446 Zg 2. ﬁ;giﬁ A/L/
Hans W. Polzer, Program Manager /7

'L kcceasion Forp

U ETIS OPART =

DY A% dJ
Uroimaneed]
Justirteaticn

Sottutiond

Avoc o ity Codos

Teien N ened Lo
JE L RLTAGY

TASK: UR20
CDRL: 01000

STARS-RC-01000/001/00

Ada/Xt Architecture: Design Report
fer the

SOFTWARE TECHNOLOGY for ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Contract No. F19628-88-D-0031
Delivery Order 0002

Informal Technical Data (A005)
25 January 1990

Publication No. GR-7670-1107 (NP)

Prepared for:
Electronic Systems Division
Air Force Systems Command, USAF
Hanscom AFB, MA 01731-5000

Prepared by:
Unisys Defense Systems
12010 Sunrise Valley Drive
Reston, VA 22091

DistRibut¥on Tindted do)
D.s. coverriment and U.S. Gover
' Contractors only:
_ Administra¥ive (25 Janu‘ry&19
\.«

TASK: UR20
CDRL: 01000

STARS-RC-01000/001/00

Ada/Xt Architecture: Design Report
for the

SOFTWARE TECHNOLOGY foz ADAP;ABLE, RELIABLE SYSTEMS
STARS

Contract No. F19628-88-D-0031
Delivery Order 0002

Informal Technical Data (A005)
25 January 1990

Publication No. GR-7670-1107 (NP)

Prepared for:
Electronic Systems Division
Air Force Systems Command, USAF
Hanscom AFB, MA 01731-5000

Prepared by:
Unisys Defense Systems
12010 Sunrise Valley Drive
Reston, VA 22091

25 January 1990 STARS-RC-01000/001/00

Ada/Xt Architecture: Design Report
A005
UR20-User Interface Subtask

Unisys Defense Systems, E&ISG
Valley Forge Operations

25 January 1990 STARS-RC-01000/001/00

CONTENTS 2

Contents
1 Introduction

4

2 Overview of the X Window System 4
2.1 X and Industry Standardized API 7
2.2 X Toolkits and the MIT X Toolkit “Xt" 8
2.3 Why an Ada Implementation of Xt? 9

oooooooooooooooooooo

oooooooooooooooooooooo

3 Design Approach 10
3.1 Functional Specifications and Re-Engineering. 11
3.2 Object-Orientationin Ada/Xt 12
3.3 Simulating Subprogram Typesin Ada S &

3.3.1 Task Types and Unchecked Conversion 13
332 AdaGenericso v it ittt e e e e e e e 14
3.3.3 Cascading Generics and Case Statement Simulation 17
3.3.4 System Dependent Programming ¢t v v v v v v v v 20
3.4 Inheritance and Polymorphismin Ada/Xt 22
3.4.1 Pseudo-Types and Compiled Data Structures 23
3.4.2 Packaging Widget Type Definitions 25
3.4.3 Subprogram and Resource Inheritance 25

4 The Ada/Xt Design 27

41 Widgets C e e st e e e e e s e e et e e e 32
4.1.1 Core Widgets T T A 32
4.1.2 Composite Widgets e e e e e e e e e s e e e e e e 34
4.1.3 Constraint Widgetso it it is e 36
4.1.4 Widget Class and Superclass Look Up 37

4.2 Widget Instantiationt 38
4.2.1 Toolkit Initialization v v v v v v e v o vt et i 38
4.2.2 Loading the Resource Database 39
42.3 Parsing the Command Linec.... 39
424 Creating Widgets 0ottt it 39

4.3 Composite Widget Management 40
4.3.1 Procedure Types in Composite Widgets 41

44 ShellWidgets ¢t v vt it i ittt e i it 41

45 Pop-UpWidgetsottt ittt enenas 55

46 Geometry Management v oot vt v ittt i 57

47 Event Management o v vt v v v v vt oo vt ottt 59

4.8 Callbacks . . v v v i it e e e e e e e e e s s et e e e e e 61

25 January 1990 STARS-RC-01000/001/00 1
|

LIST OF FIGURES 3
4.9 Resource Management r e s et e et e e e e e 63 w
49.1 InterfacetoResources00 ruu.o.. 63 ;

4.9.2 Representationof Resource Lists 65

4.9.3 Resource Management Package Specification 66

4.10 Translation Management, .0, 68

4.11 Utility Functions ¢ v v i it i ittt et e et e e 70

5 Appei:dix A: Case-Statement Procedure Types 74
6 Appendix B: System-Dependent Procedure Types ™ |

7 Appendix C: Simple Widget Definition 81

List of Figures

1 NIST User Interface Reference Model v v v v v, 6
2 Generic Widget Creation Specificationo.... 14
3 Generic Widget Creation Instantiation 15
4 Generic Superclass-Subclass Chaining 0uv... 16
5 Generic Superclass-Subclass Instantiation 16
6 Procedure Types — Generics Generation. e et e 18
7 Procedure Types - Sample Usage B £
8 Procedure Types - System Dependent 21
9 Ada/Xt Widet TypeModelttt ittt nnennn 24
10 Widget Types ~ Ada/Xt Packaging Convention e e e e e e 26
11 UR20-UI Ada/Xt Packaging Implementation 31

1 INTRODUCTION 4

1 Introduction

This report provides a detailed description of the Ada/Xt toolkit architecture. The purpose
of this report is to describe the Ada/Xt architecture in terms of system-independent package
specifications, and to describe the analysis which contributed to major design decisions. This
report is part 1 of a two part Ada/Xt design description; part 2 consists of the compilable
Ada package specifications of the UR-20 Ada/Xt implementation which conforms to the
system-independent specifications outline in section 4 of this report.

The emphasis on system-independent package specifications rather than language inde-
pendent specifications derives from recognition that the C language interfaces defined in
the X Toolkit (Xt) Intrinsics definition [3] is nearly sufficiently language independent ~ for
languages in the Algol tradition (including Ada). The Ada toolkit design verifies this claim,
since there is a very close syntactic mapping of types and interfaces from the Ada specifica-
tion to the C specification.

The difficult problems addressed by the UR20-UI design effort concerned the development
of object-oriented toolkit features in Ada. This area of toolkit design exposed most of
the language dependencies embedded in the C definition of Xt. A substantial part of this
report discusses the effective use of Ada to provide object-oriented features (e.g., inheritance,
procedure types) without unduely impacting toolkit performance and system independence,
and without relying on automatic program generation techniques.

Section 2 of this report provides a high-level description of the MIT X Window System,
including rationale for implementing a toolkit in Ada. Section 3 discusses the UR20-UI design
goals, approach, and a detailed analysis of the key design decisions made concerning the im-
plementation of object-oriented toolkit features. Section 4 provides the system-independent
toolkit specification. The organization of section 4 parallels exactly the MIT X Toolkit In-
trinsics documentaiion [3] Indeed, most operaticns defined in section 4 are not documented
in this report; instead, the MIT documentation is referenced. This demonstration of toolkit
similarity is an important result of the UR20-UI approach, and should facilitate MIT X
Consortium acceptance of the STARS Ada/Xt toolkit for eventual Consortium maintenance
and distribution.

2 Overview of the X Window System

This section of the report provides a brief description of the X Window System, and intro-
duces and defines terminology used throughout this report. A more complete description of
X can be found in [6].

X is a network-based windowing system. The National Institute for Standards and Tech-
nology (NIST) has developed a layered model to describe user interface architectures. This
layered model is depicted in figure 1, and has become a federal information processing stan-

25 January 1990 STARS-RC-01000/001/00

2 OVERVIEW OF THE X WINDOW SYSTEM 5

dard (FIPS) [4]. The lower four layers of this model in effect provide a description of the X
Window System.

The lowest layer in the model, layer 0, is the X protocol. This data-stream protocol for X
is currently undergoing formal standardization efforts in the ANSI X3H3.6 committee. The
protocol defines the manner in which X applications communicate with X servers. Applica-
tions in this sense are sometimes called clients, although this terminology may be confusing
because the term “client” is also used to describe user’s of toolkit widgets (described, below).

The next layer, layer 1, is the programmatic interface to the protocol layer. This set
of interfaces, known collectively as “Xlib”, provides the primitive programmatic layer upon
which X applications can make requests of X servers. SAIC, under a STARS Foundations
contract, developed Ada bindings to the C Xlib implementation. This set of bindings can be
characterized as (moderately) “deep” bindings, since a substantial effort was made to map
the C data types to Adea, and do as much Xlib processing in Ada as possible before sending
the actual request to the C implementation.

The Ada/Xlib bindings were not complete, however. Utility functions requiring proce-
dure types as parameters were not implemented, probably because any implementation of
procedure types that would enable C Xlib code to execute Ada subprograms was deemed
to be too system-dependent for STARS. Resource management was also not implemented.
The reason why these interfaces were not mapped in the Ada bindings is not clear, although
it is possible that these interfaces were not officially part of the Xlib layer at the time the
foundations work began.

The next two layers, layers 2 and 3, map to the MIT Toolkit intrinsics and widgets
layers, respectively. The Unisys UR20 user interface subtask addresses the development of
an Ada implementation of these two layers — not bindings. These Ads implementations will
make use of the SAIC Xlib bindings, which have been upgraded to revision 3 (X11R3), and
extended to include all of the Xlib resource management functions, as part of the UR20 task.

Layer 2, the subroutine foundation layer, defines a single application portability interface
(API) for manipulating collections of user interface abstractions (called “toolkit™ in the
reference model, but called “widgets” or “widget sets” in Xt parlance). This separation
of subroutine interface from user interface abstraction presents interesting programming
paradigm questions to Ada software developers. That is, the intrinsics (layer 2) define a
set of interfaces for manipulating an open-ended set of abstractions. As will be discussed
later in this report, Ada generics are not sufficiently general to support this kind of software
layering.

Layer 3, the toolkit, is essentially a library of reusable, extensible, and composable user
interface abstractions. This “widget” library provides an excellent example of what Unisys
has been describing as tool fragments, here tailored to the fragments of tools which concern
the display of application program data. The ideas of widget reusability, extensibility and
composability are central to the MIT X Toolkit, or “Xt”, which draws heavily upon the
concepts of object-oriented programming languages and systems in order to achieve these

25 January 1990 STARS-RC-01000/001/00

2 OVERVIEW Or THE X WINDOW SYSTEM 6

Layer 6: Application

Layer 6: Dialogue
(UIMS, VWindow Mgr.)

Layer 4: Presentation
(UIMS, Vindow Mgr.)

Layer 3: Toolkit

‘ Layer 2: Subroutine Foundation

Layer 1: Data Stream Interface

Layer O: Data Stream Encoding

Figure 1: NIST User Interface Reference Model

25 January 1990 STARS-RC-01000/001/00

2 OVERVIEW OF THE X WINDOW SYSTEM 7

effects. A significant part of this design report addresses the simulation of object-orientation
in Ada without recourse to program generation.

2.1 X and Industry Standardized API

In recent years the industry has recognized the importance of separating the user interface
code and the application code. This separation reduces software development costs by per-
mitting reuse of user interface code and providing consistent behavior (reducing training
costs and reducing errors caused by differences in the user interface behavior). This separa-
tion requires a well defined interface between the application and user interface abstractions,
called an application program interface or API.

In X the interface to the user interface abstractions or widgets consists of functions
(contained in the intrinsics) to access widgets and the data structures within the widgets that
allow applications to customize the user interface. These data structures contain resources
(specifying color, size, fonts, etc.) and lists of application procedures invoked by the intrinsics
upon occurrance of specified events.

Why is the industry demanding a standard API and user interface abstractions? The
demand originates in the user community (especially the U. S. government) and independent
software vendors (ISVs). Users now buy hardware platforms and software from a variety of
vendors and need a consistent user interface (“look and feel” or appearance and behavior)
across platforms and among applications running on a single platform.

ISVs face a demand for their applications on a variety of platforms. The application
changes litile from platform to platform, but the user interface may change drastically. The
separation of the user interface from the application is important, so that a port to another
platform requires at most a rewrite of the user interface and not a complete rewrite of
the application. Furthermore, a common API means the application code need not change
when the user interface changes. Portable user interface abstractions like the Xt widgets
mean that an ISV can easily port a user interface from platform to platform, thus reducing
the conversion costs and ensuring a consistent “look and feel” across all platforms, and
consistency among the ISV’s product user interfaces.

Industry standards organizations, ANSI X3 and IEEE, are standardizing the lower layers
of the FIPS model. The X protocol (data stream encoding) standards work began two years
ago and should be completed soon by X3H3.6. The toolkit and API standardization work
began 1n 1989 in the IEEE P1201 committee. P1201 is currently working on a standard for
the widget set. ANSI X3V1 is working on standards for man-machine interfaces. X3V1.9
will develop standards for “look and feel” of user interface abstractions such as menus.

Why has NIST and the standards bodies chosen X? X is the first widely accepted window
system addressing the needs of the networked, bit-mapped graphics workstation environment.
X runs on a wide range of Unix based platforms, Digital VMS and Ultrix machines, IBM
mainframes, Apple MacIntosh, PCs and graphics terminals. One reason for its acceptance is

25 January 1990 STARS-RC-01000/001/00
2 OVERVIEW OF THE X WINDOW SYSTEM 8

that source is available free of licenses or royalties. In addition, interfaces to several languages
exist, C (primarily), C++, Lisp, Ada, and Prolog; however not all implementations support
the Xt toolkit layer.

2.2 X Toolkits and the MIT X Toolkit “Xt”

A number of toolkits evolved from the X Window System. Most of these are based on
the Xt intrinsics. MIT released a sample set of widgets, Athena widgets, with the Xt
Intrinsics, and many applications were and still are being written using Athena widgets.
The Athena widgets were an incomplete set (there is no menu widget; one can be built from
other Athena widgets), and so various companies added widgets to their X based products.
Digital developed XUI, AT&T Xt+, and HP and Sony developed widget sets. In many cases
(XUI and Xt+) the intrinsics were extended. With the demand for a single API and “look
and feel” from users and ISVs, groups like the Open Software Foundation (OSF) moved
toward a single API and widget set. OSF developed Motif by merging XUI and the HP
widget set. There is still not an agreement on a single widget set, but the standards work
will eventually define one.

Most toolkits are based on the MIT Xt Intrinsics, but several are not: Xray (2], Andrew
[5) and XView are well known examples. Xray (or Xrlib) was an early HP toolkit which
added three layers above the Xlib layer:

o Intrinsics - input handling, object interaction and geometry management,
e Field Editors - the basic user interface abstractions such as scrollbars and buttons,

e Dialogs - higher level abstractions such as menus, message boxes and panels.

With the rising popularity of Xt, HP implemented a similar “look and feel” with an Xt
Intrinsics based widget set and use of Xray has declined.

Sun recently announced the release of XView, a toolkit built upon the Xlib layer. The
XView API is compatible with the proprietary SunView API. XView implements the Sun JAT&T
Open Look “look and feel”.

The Andrew Toolkit, developed at Carnegie Mellon University (CMU), is a window
system independent, object oriented toolkit. Besides a CMU built window system, the
Andrew Toolkit supports X (X protocol and Xlib). The Andrew Toolkit consists of data
object/view pairs where the data object is the information to be displayed (text in a text
editor, for example) and a view is the user interface abstraction (scrollbars, menus, etc).
One feature of Andrew is the ability to intersperse multiple data objects within a view. This
permits a mixture of text, graphics and animations within a window (e.g. &nim.ation and
graphics can occur along with text in the body of an email message). This toolkit has not
been widely accepted beyond CMU.

25 January 1990 STARS-RC-01000/001/00

2 OVERVIEW OF THE X WINDOW SYSTEM 9

. Xt is clearly the dominant toolkit in the-marketplace. What are the features that are
making Xt the de facto standard and soon an official standard? Certainly, its availability
free of licenses and royalties is a contributing factor. Other important attractions are its
extensibility through creation of new widgets, and from its object oriented design and the
ability to easily subclass widgets. Adding new widgets or subclassing does not require
recompilation of the toolkit since the intrinsics do not need to know anything about a
specific widget. The intrinsics are policy free (implies nothing about “look and feel”) so that
a vendor or application is free to specify its own “look and feel” by choice of widgets. Xt also
provides the separation of user interface objects from the application code, thus permitting
portability and reuse of the user interface code.

2.3 Why an Ada Implementation of Xt?

Implementing Xt in Ada presents some challenging problems, and is not without some risk.
To achieve & high degree of flexibility and extensibility, Xt made use of language features
which have only tenuous analogs in Ada (e.g., procedure types). Finding the correct Ada
approach to these language dependent features of Xt requires making tradeoffs among: com-
piler independence, operating system independence, and system/hardware independence.
Choosing a suboptimal Ada design/implementation risks industry acceptance of Ada/Xt,
and hence risks emergence of a de facto Ada toolkit API. However, in many cases, no “per-
fect” solution exists. In fact, a significant portion of this report deals with the tradeoffs
. among various competing implementation strategies.

Since a fairly substantial engineering effort must be expended (with some risk) to imple-
ment Xt in Ada, a reasonable question to ask is whether a better cost/benefit ratio would
be obtained by following the Ada/Xlib example and developing an Ada binding to the MIT
X toolkit. There are several reasons why a bindings approach to Xt would not be adequate
in the long-term.

First, there is the issue of widget set extensibility. A significant feature of the Xt model
is the ease with which new widgets can be constructed from old widgets. Indeed, this is
a hallmark of object-oriented programming in general, which attempts to maximize reuse
by factoring abstractions into class hierarchies, facilitating finer-grained reuse than possible
with unstructured collections of monolithic abstractions. However, a set of bindings to the C
implementation of Xt would require that new widgets be programmed in C, and that a fa.i.rly
elaborate system-dependent type mapping interface be developed and maintained which
maps Ada application resource types to the underlying C representations for management
by the C toolkit implementation.

Second, beside issues of static inter-language interfaces, there are issues of inter-language
runtime cooperation. The notion of procedure reference is indelible in Xt: a major part of
the toolkit model is that the toolkit will execute application code on behalf of the application
in response to certain events generated by the server. That is, an Xt application program

25 January 1990 STARS-RC-01000/001/00

3 DESIGN APPROACH 10

does not have a traditional control structure, but rather specifies what code to execute
under various circumstances: the toolkit in effect executes the application program. As a
consequence, a toolkit binding needs to provide the C implementation with the address of a
subprogram which will execute Ada code (either directly or indirectly). This introduces a
considerable degree of compiler dependence, since the details of parameter passing protocol
and stack frame environments are not specified by the Ada language definition. Although
the UR20 toolkit implementation makes use of procedure addresses, it provides an interface
which will accommodate a “pure Ada” solution should circumstances demand it. An Ada
binding to Xt would not have this luxury.

Finally, there are issues of runtime environment interaction. If a significant number of
Ada applications are to be developed which use the X Window System, issues of conflict
between the Ada runtime system and underlying host operating system must be considered.
For example, conflicts between the Ada runtime enviro—~ment usage of Unix signals to control
task scheduling and C Xlib code must be carefully cc .dered. Some Ada runtime environ-
ments even provide a mechanism to disable runtime environment signal usage during calls
to external language routines. This added complexity and system dependency can only be
adequately resolved if, in the long term, a full Ada implementation of the client interfaces
to X is developed (Xlib and toolkit interfaces). From this perspective, the development of
another Ada binding would be at most a stopgap effort which would have to be redone at a
later date.

3 Design Approach
The UR20 task had two overriding goals to achieve in the Ada toolkit implementation:

e Develop an eminently usable implementation of Xt which fully preserves the features
and advantages of the C implementation.

o Establish that the Ada implementation faithfully implements the MIT toolkit, and
achieve X Consortium acceptance of the Ada implementation as a Consortium “prod-
uct.”

The first goal does not strictly require implementing Xt, but rather some toolkit which
provides all of the features that Xt provides. In practice however, it would be unreasonable to
expect to design and implement an entirely new toolkit model (in a nine month perf?rmance
period) which can compete with Xt. Instead, this goal had more to do with ensuring that
the resulting implementation of Xt sufficiently preserves the strictures of Ada style af\d
usage, and was also efficient and compact so as not to overburden applications which require
interactive windowing interfaces. In short, this goal concerns acceptance of Ada/Xt by Ada

software practitioners.

25 January 1990 STARS-RC-01000/001/00
3 DESIGN APPROACH 11

The second goal requires presentation to the X Consortium of some evidence that the
Ada implementation faithfully implements the MIT X Toolkit. This presented an interesting
question, since the only existing description of what Xt s is a very detailed description of
the C implementation. That is, there is no pre-existing specification of what Xt is beyond
it’s implementation. This goal, then, concerns provision of an architectural description of
the Ada implementation which will maximize our chances of attaining acceptance of Ada/Xt
by X Consortium members.

Note: This section of the design report provides an in-depth discussion of
various approaches to implement Xt in Ada. In places, understanding the highly
detailed discussion of advanced Ada programming techniques used in Ada/Xt
requires that the reader has a significant degree of Ada and MIT X Toolkit
competency.

3.1 Functional Specifications and Re-Engineering

The originally stated UR20-UI toolkit design approach was to begin with a study of the MIT
Xt implementation and documentation, and from this study extract and specify a language
independent specification of the MIT X Toolkit. This specification would then be mapped to
some Ada realization. Thus, two products of this design process were envisioned: a language
independent specification, and an Ada language specification, of Xt.

However, this abstract process encountered difficulties early on. It became apparent that
there was very little that was indeed “language independent” in the C documentation. Fur-
ther, we began to suspect that what truly did constitute language independent architectural
constraints would, when specified, provide little or no insight to the task of creating an Ada
implementation. Thus, our premise that a language independent model could be extracted
via a reengineering process seems faulty.

For example, consider the issue of widget subclassing and inheritance. The C imple-
mentation supports subclassing and inheritance via manual type conversions to predefined,
known widget and widget-class data structures, and data structure specification conventions,
respectively. This is a concrete realization of the abstract idea of widget-class hierarchies
with inheritance. The realization of this abstract architectural feature in an object-oriented
language like C++ or CLOS will likely be radically different from the C realization; a
language-independent specification sufficiently general to describe these various implemen-
tations would be vague to the point of being useless as a prescriptive vehicle. .

This may appear to be a disappointing result, but there are positive aspects. First,
we concluded that a truly language independent specification is not likely to be of much
use beyond shallow conformance testing. However, the Xt implementation does provide
an approach for implementing an object-oriented system in non-object-oriented languages.
More specifically, we were able to test the assertion made by the author’s of Xt that the
intrinsics are language independent for procedural languages.

25 January 1990 STARS-RC-01000/001/00
3 DESIGN APPROACH 12

. We conclude that they are indeed reasonably language independent for procedural lan-
guages in the Algol-Pascal-Modula2-Ada tradition. Further, modulo minor syntactic varia-
tions (e.g., turning C functions with side-effects into Ada procedures), an Ada implementa-
tion of Xt is able to preserve a very direct syntactic mapping of Ada intrinsics to C intrinsics,
and Ada widget programming conventions to C widget programming conventions. This is
indeed an excellent result because it provides in effect what we wanted from the language-
independent specification: some means to justify to the X Consortium that we had imple-
mented the MIT X Toolkit, and not some new variant. Further, this close correspondence
is a compelling argument for tying evolution of the Ada implementation to it’s “parent”
C implementation, since the differences are not so great as to make parallel evolution an
unreasonably expensive venture.

Although UR20-UI does not provide a language independent specification for Xt, we do
provide a system-independent Ada specification, suitable as a basis for standardization in
the Ada community. This specification is useful for highlighting where extra implementation

details may be added to support implementation on a particular hardware/operating system
platform.

3.2 Object-Orientation in Ada/Xt

It is not the purpose of this design report to convince the reader of the utility of object-
oriented programming in the development of user interface-intensive systems. This report
also assumes some level of familiarity with such terms as object class, object instance, and

. snheritance. Description of object-oriented concepts are numerous in literature, of which
[1, 7] are just a small (but significant) portion.

Three features of object-oriented languages need to be simulated in Ada before an ad-
equate implementation of Xt can be undertaken. The design of this simulation using Ada
features, rather than through some form of program generation, constituted a significant
portion of the Ada/Xt design process. These three features are:

¢ subprogram types, i.e., “methods”
e inheritance
e polymorphism

It is important to note the term simulation. The ideas of runtime type polymorphism
and type inheritance introduces a model of type semantics not implemented by Ada (or C).
Since Ada does not implement the type model required of an object oriented system, this
type model must be simulated. Thus, one way of viewing the toolkit architecture is 8s a
system of programmatic interfaces and programming conventions to use these interfaces in
order to simulate object-oriented capabilities in a non-objective language.

25 January 1990 STARS-RC-OIOOO/OOI/OOV
3 DESIGN APPROACH 13

The remainder of this section describes how the Ada/Xt architecture simulates subpro-
gram types, inheritance, and polymorphism.

3.3 Simulating Subprogram Types in Ada

This section describes various solutions to the problem of simulating subprogram types in
Ada. It is important to note that the problem being solved is not simply that of referring to
executable code as data. Were that the case, the Ada tasking mechanism would be sufficient
(albeit somewhat an overkill). Instead, the problem is one of referring to subprograms as
types characterized by interface alone, such that two subprograms with the same interface
but that compute distinct functions would be considered subprograme of the same type.

3.3.1 Task Types and Unchecked Conversion

One implementation approach makes use of Ada task types as a foundation for implementing
subprogram types. Unfortunately, task types do not provide for alternative task bodies for
task specifications.

One way around this is to define a task type T0 with a task entry Te whose parameter
profile matches the subprogram profile type being implemented. Rendezvous with instances
of TO on entry Te will raise an exception — task type TO is merely used in order to create a
type mark for constructing a data structure containing references to other task types which
share the same syntactic task specification. New task types Tn, Tm, Tp can be defined
which have the same syntactic specification as TO, and instances of these new task types
can be type converted (via Ada unchecked_conversion) to instances of type T0. Finally, the
entries of Tn, Tm, and Tp are accessed via rendezvous with these task instances as if they
were instances of T0. Thus, unchecked_conversion is used to achieve distinct task bodies for
the same task specification.

However, this implementation was rejected for two reasons. First, although this technique
worked on several compilers, this use of unchecked conversion is clearly outside the scope
of the intended use of this feature. There is no reason to believe that all compiler vendors
will generate code to perform rendezvous based solely upon the syntactic form of the task
definition. Although we do endorse some level of system-dependent programming for Ada
implementations of the X toolkit, this kind of systems-dependent programming must be
considered dangerous.

A second reason for disqualifying this technique derives from practical constraints im-
posed upon the UR20 approach. That is, UR20 takes as a foundational basis the STARS
Foundations Ada/Xlib bindings. Thus a significant amount of application processing is ac-
tually done by code written in C. However, the use of tasking introduces many potential
conflicts between the Ada runtime environment and the underlying host operating system,
which is accessed directly by the C implementation of Xlib. In particular, Ada runtime en-

25 January 1990 STARS-RC-01000/001/00

3 DESIGN APPROACH 14

. generic

type gen_widget iz private;
type gen_widget_class is private;

=< core class procedures needed during widget creation
with procedure class_part_initialize(wc : widget_class);
with procedure class_initialize;
with procedure initialize(request, new_request : widget);
with procedure initialize_hook(w : widget;
args : arg_list);
== creates the widget record with proper size
with function malloc_widget return gen_widget;
package create is

function xtcreatewidget(name : string;

widget_class_ptr : gen_widget_class;
parent : widget;

args : arg_list) return widget;
end create;

Figure 2: Generic Widget Creation Specification

vironment use of Unix signals as a means of task scheduling (e.g., SIGALARM) can conflict
with the smooth execution of C code depending upon Unix interprocess communication.

. 3.3.2 Ada Generics

Another approach to handling procedure types is through the use of Ada generics to pa-
rameterize widget class definitions with the class operations that would be otherwise rep-
resented as procedure type instances embedded in the widget class data structures (these
data structures are described in greater detail later in this report). Although this static
parameterization would not apply to more dynamic uses of procedure types (e.g., callback
resources), generic parameterization of static subprogram types would constitute a signifi-
cant design decision for the Ada/Xt toolkit. We tried this with the procedure types in the
core class record structure. These procedures handle initializations, setting and retrieving
resource values, resizing, exposures, etc. We thought certain functional areas, such as widget
creation, could be defined by generics and instantiated with the needed functions defined in
the core class. To minimize the size of the generics we attempted to write the generics as a
thin generic interface which references underlying, non-generic widget creation code.

The code fragment in figure 2 is the generic specification for widget creation code. The
code fragment in figure 3 is an instantiation of the generic specification for label widget
creation.

Some of the core class procedure types were only invoked within superclass to subclass
chains and could be implemented as generics parameterized by the core class function and

25 January 1990 STARS-RC-01000/001/00

3 DESIGN APPROACH 15

package label is
package label_create is new create(label_widget,
label _widget_class,
class_part_init,
class_initialize,
ini¢,
init_hook,

malloc_label_widget);
end label;

Figure 3: Generic Widget Creation Instantiation

its superclass instantiation of the same chaining generic. The code fragment in figure 4 is
the superclass to subclass chaining generic for the class_part_initialize function specified in
the core class of every widget class.

Finally, The code fragment in figure 5 instantiates the class_part_init superclass-to-
subclass chain for the label widget. Note, the label widget does not execute any code for
class part initialization and a dummy procedure (with empty body) is uscd to instantiate
the generic.

Although we demonstrated the use of generics for procedure types in the proof-of-concept
for widget creation, we exposed a number of inadequacies in the approach.

We realized that this approach would require a large number of generic instantiations
for each widget class used in an application. We hoped that the generics would be a thin
interface to the intrinsics, but the widget creation generic showed that references to generic
parameters were needed throughout the widget creation code. We concluded that generic
Ada packages to simulate procedure types require virtually complete implementation of the
intrinsics within generics, thus forcing applications to instantiate a copy of the intrinsics for
each widget class used in the application.

Simulating procedure types with generics failed to handle all uses of procedure types
in the intrinsics. Our method worked because the procedures were determined at compile
time and based on a static tree structure (the widget class hierarchy). This failed on dy-
namic structures such as the run time widget tree. The generic approach failed in widget
creation when calling the widget’s parent’s insert_child procedure. The generic instantiation
of XtCreate Widget can not know anything about the parent’s insert_child procedure. Pro-
cedure types referenced via dynamic structures, such as the widget tree, require a different
approach.

The expected code size due to the large number and size of generic instantiations and
the failure of the generic approach for simulating some procedure types made this approach
unacceptable.

25 January 1990 STARS-RC-01000/001/00

3 DESIGN APPROACH 16

package intrinsics is
-=- superclass to subclass chaining generics
generic
with procedure superclass_class_part_init(class : widget_class);
with procedure class_part_initialize(class : widget_class);
procedure class_part_init_chain(class : widget_class);
end intrinsics;

package body intrinsics is
procedure class_part_init_chain(class : widget_class) is
== class_part_initialize is a downward chaining procedure
class_ptr : core_class := widget_to_core_class(class);
begin
if? class_ptr.core_class.superclass /= null_address then
dl:gorclnll_clatl-pnxt_init(cln-u_ptr.co:o_elaul.tuporclull);
on H
if class_ptr.core_class.class_part_initialize then
clnsl-pnrt-initinlizo(clnnsgs
end if;
end class_part_init_chain;
end intrinsics;

Figure 4: Generic Superclass-Subclass Chaining

package label is
label_core_part : core_class_part :=

(superclass => superclass_to_widget_class(simple_classrec_ptr),
class_name => "label",
vidget_size => labelrec’size,

class_initialize => true,

class_part_initialize => false,

)-- remaining fields follow

1
-- downward chaining functions
-~ renames the label widget’s superclass class_part_init function
procedure superclass_class_part_init(class : widget_class)
renames simple.class_part_init;

-- the label widget’s class_part_init function is null so instantiate
-- the generic with the superclass’s and a dummy label class_part_init
procedure class_part_init is

nev class_part_init_chain(superclass_class_part_init,
null_class_part_initialize);

end label;

Figure 5: Generic Superclass-Subclass Instantiation

25 January 1990 STARS-RC-01000/001/00
3 DESIGN A. PROACH 17

3.3.3 Cascading Generics and Case Statement Simulation

Although Ada does not provide for procedure types (from which reference types can be
constructed), it is still possible to simulate procedure types in a system-independent manner.
The simple scheme is to assign a unique identifier to subprograms, and use this identifier as
an index to an Ada case statement which invokes the subprograms. The only difficulty that
needs to be addressed in this implementation is how these unique identifiers are generated.

In a Q-task standards report [8] Unisys proposed one implementation which uses the
Ada generics mechanism to generate procedure references. The package specification for this
implementation is provided in figure 6. The full implementation is provided for convenience
in appendix A.

This implementation makes use of cascaded generic instantiations to in effect create a
linked-list of generated (via instantations) package bodies. Each generated package body
acts as a state machine which manages a discrete range of subprogram indexes; indexes that
lie outside this range indicate that the actual subprogram referenced by the index is managed
by a different instantiation, which is then accessed via a “next_callback” operation provided
as a generic actual from a previous (cascaded) instantiation.

Since this explanation may be obscure, an example usage of this implementation is pro-
vided in figure 7. Note that this usage generates only one procedure reference per instantia-
tion, despite the fact that the generic interface allows as many as three procedure references
to be generated. This is done for simplicity to illustrate the use of cascaded generics as a
means of achieving an open-ended mechanism for attaining procedure references.

One advantage of this approach (beyond it’s pure use of Ada) is that application pro-
grammers (i.e., toolkit clients) can add application-defined subprogram type instances to
cascades of pre-defined (i.e., by the toolkit intrinsics or widget programmers) subprogram
type instances. This reduces potential configuration managemen! problems that would be
introduced if all subprogram type instances needed to share the same case statement dis-
patcher.

One problem with this implementation concerns the visibility of the top-level (i.e., “last™)
generic instantiation in the cascade. For systems such as Xt, which execute client subpro-
grams based upon event sequences generated from the server, client defined subprogram
references must be visible to the toolkit intrinsics, in addition to widget and intrinsics de-
fined subprogram references. As a result, the toolkit must either be (at some level) a generic
abstraction which parameterizes the “call” operation for each procedure type, or el:se the
application programmer must complete the implementation of a top-level non-generic call
interface whose implementation will reference the top-level generic cascade. .

Turning the intrinsics into a generic abstraction is not tenable for reasons which were
discussed in the previous section. Requiring the application programmer to complei':e the
procedure call implementations appears to introduce a considerable degree of inconvenience,
but perhaps this is outweighed by the added level of machine independence. The UR-20

25 January 1990 STARS-RC-01000/001/00

3 DESIGN APPROACH 18

‘ package callback_mechanism is

CALLBACK_CALL_ERROR: exception;
CALLBACK_INSTALL_ERROR: exception;
CALLBACK_RANGE_ERROR: exception;

NMAX_CALLBACKS: constant:= 1024;
NUM_CALLBACKS: constant:= 3;

subtype callback_id_range is natural range O .. NAX_CALLBACKS;

package callback_ids is
type callback_id_type is private;
null_id: constant callback_id_typs;

function to_callback_id_range(id: callback_id_type)
return callback_id_range;

private
function next_callback_id return callback_id_range;
type callback_id_type is record
the_callback_id: callback_id_range:= next_callback_id;
end record;
null_id: constant callback_id_type:=
(the_callback_id => callback_id_range’first);
end callback_ids;

use callback_ids;

. -- the default procedures will never actually be called
procedure default_next_call_back(id: callback_id_type; s: string);
procedure default_callback(s: string);

generic

with procedure cbi(s: string) is default_callback;

idi : in callback_id_type:= null_id;

with procedure cb2(s: string) is default_callback;

id2 : in callback_id_type:= null_id;

with procedure cb3(s: string) is default_callback;

4d3 : in callback_id_type:= null_id;

with procedure next_callback(id: callback_id_type; s: string)

is default_next_call_back;

package callbacks is .
procedure callback (id : callback_id_type; s: string);
end callbacks;

end callback_mechanism;

Figure 6: Procedure Types - Generics Generation

25 January 1990 STARS-RC-01000/001/00

3 DESIGN APPROACH 19

with callback_mechanism; use callback_mechanism;
with text_io; use text_io;
procedure test_callback mechanism is

use calldback_ids;

procedure p(s: string);
procedure q(s: string);

Pl: callback_id_type; -- p1 and q1 now have valid callback ids
ql: callback_id_type;

-~ in p_callbacks, cb2 and cb3 are "default"” callbacks
Package p_callbacks is new callbacks(cbl => p, idl => p1);

== q.callbacks uses p_callbacks callback routine to chain instantiations
=~ procedure p and q could have both been installed in a single
=~ instantiation, but we’re demonstrating instantiation chaining.
package q_callbacks is new callbacks(

cbl => q,

id1 => q1,

next_callback => p_callbacks.callback);

use q_callbacks; -- make the last instantiation directly visible

-~ procedures p and q do different things
procedure p(s: string) is
begin
put_line("P:" & 8);
end p;
procedure q(s: string) is
begin
put_line("Q:" & s);
end q;

begin
callback(pi, "hello world");
callback(ql, “hello world");
end test_callback_mechanism;

Figure 7: Procedure Types - Sample Usage

25 January 1990 STARS-RC-01000/001/00

3 DESIGN APPROACH 20

toolkit does not use the cascading generics implementation; however, the procedure invoca-
tion interface actually used is not inconsistent with the cascading generics implementation.

Another apparent problem concerns performance. A considerable amount of code needs
to be executed just to locate the appropriate procedure to execute. This problem is com-
pounded if several cascades of generics are needed. Although the generic abstraction can
be implemented to accommodate more procedure formals, architectural considerations may
require several cascades, e.g., one instantiation for intrinsics defined subprogram instances,
one for widget defined instances (perhaps one for each widget type), and finally at least one
for the application itself

3.3.4 System Dependent Programming

Yet another alternative implementation scheme for introducing subprogram types takes ad-
vantage of the system-dependent Ada attribute ‘cddress, applied to subprogram instances.
Although this attribute “refers to the machine code associated with the corresponding body,”
(Ada LRM), this definition leaves open considerable compiler implementation leeway, and
so any solution based upon this feature is inherently non-portable, both across compilation
systems and host environments.

Nevertheless, this form of system dependent programming appears to be more justifi-
able than, for example, the unchecked programming used in the task-based simulation noted
above. Also, although non-portable, the amount of system-dependent code required to im-
plement subprogram types with the ’address attribute appears to be rather small, assuming
the compilation system provides adequate documentation on procedure call conventions (and
does indeed implement the ’address attribute in a reasonable way).

The package specification for a sample subprogram type is provided in figure 8. (This
subprogram type will be referred to later in this report when runtime inheritance is de-
scribed). The package body is provided in appendix B for the VADS, TeleSoft, and Tartan
compilers. ! The procedure control block structure is tailored for use with Alsys, although
the same data structure also works for VADS and TeleSoft (the data fields are not used in
these compilers).

The interpretation of this implementation is very similar to that described in the cas-
caded generics implementation: the generic instantiation generates a unique identifier for
the subprogram type instance. In fact, the package interface is nearly identical, and for
practical purposes the implementations are interchangable (which is convenient, in case the
system-dependent approach is unworkable for a given compiler). The major difference is that
the implementation of the “call” subprogram dispatch procedure will be in C or assembly
language, or some language which can de-reference subprogram addresses (in effect, execute
a “jump subroutine” or “jst” instruction).

1The Alsys implementation is more convoluted due to difficulties in getting documentation on the Alsys
procedure call conventions.

25 January 1990 STARS-RC-01000/001/00

3 DESIGN APPROACH 21

package xt_procedure_types is

== vendor-specific procedure coatrol block:
type procedure_control_block is record

proc_address : system.address;

-- subprogram environment context data fields here...
end record;

package xt_widget_class_procs is

type xt_widget_class_proc_rep is limited private;
type xt_widget_class_proc is access xt_widget_class_proc_rep;

== A constant used for runtime inheritance resolution:
function xt_inherit_widget_class_proc return xt_widget_class_proc;

== the subprogram dispatch function:
procedure call(the_proc_id : xt_wvidget_class_proc;
the_widget_class : widget_class);

== this generic is instantiated with the procedure to be called
== proc_id will acquire the address of the the_proc as well as
-- the (activation frame) environment needed to execute the_proc
. generic
proc._id : in out xt_widget_class_proc;
vith procedure the_proc(the_widget_class : widget_class);
package procedure_pointer is
end procedure_pointer;
private
type xt_widget_class_proc_rep is new procedure_control_block;
end xt_widget_class_procs;
-- other procedure type definitions follow...

end xt_procedure_types;

Figure 8: Procedure Types — System Dependent

3 DESIGN APPROACH 22

It should not be concluded that this mechanism is completely without restrictions. In
fact, several very subtle problems can be encountered, and great care must be taken in
defining procedure types for use with this implementation.

One major area of concern is related to parameter passing conventions: successful use of
this implementation requires an adequately documented compilation system. For example,
an unconstrained array can be implemented as an array with a dope vector; such arrays can
quite naturally be passed to subprograms via two parameters, not one. Thus, in general
the foreign language “call” routine will have to be tailored for each subprogram type to
accommodate passing different numbers and types of arguments.

Note: The UR20 implementation actually employs a single dispatch function that invokes
ada subprograms via their address, and passes only a single argument — the address of a record
structure which encapsulates the set of arguments defined for various procedure types. See
appendix B for the details of this optimization.

A second area of concern is related to the consequences of Ada subprogram and type
elaboration issues. Essentially, safe use of this implementation requires the programmer
ensure that the subprogram body and all types used by the subprogram be fully elaborated
before the subprogram reference is obtained via instantiation.

Finally, and perhaps most importantly, safe use of the system-dependent implementation
requires thoughtful application of usage guidelines which ensure that the subprogram object
will exist only in scopes compatible with the referenced subprogram. That is, care must
be taken to ensure that the envizonment (e.g., stack activation frames) appropriate for the
referenced subprogram exists at the time the subprogram is called. This could have been
enforced in the language by providing the call operation as part of the generic subprogram
type abstraction, rather than in a global context; however, this would have resulted in
visibility problems described in the previous section on cascading generics. A simple usage
guideline for the system-dependent implementation is to introduce the subprogram object
declaration within the same scope which contains the subprogram declaration.

3.4 Inheritance and Polymorphism in Ada/Xt

The notions of inheritance and polymorphism are closely related in object oriented systems.
Crudely, polymorphism describes a type model in which operations (in general, “propertie.s”)
defined on a single type are applicable to a family of related types. Ada generics provide
a form of parametric polymorphism, i.c., a set of operations is applicable to a iype if that
type is parameterized by a set of known properties, e.g., is assignable, has equality defined,
has an ordering relation defined, etc. This is sufficient only if the types in a system can
be characterized by a finite number of known properties. This is not the case in an object-
oriented class hierarchy, which defines (via inheritance) an inclusion polymorphism type
model.

The Ada/Xt toolkit simulates polymorphism and inheritance by means of a visible

25 January 1990 STARS-RC-01000/001/00

3 DESIGN APPROACH 23

pseudo-type hierarchy which provides a logical type system to support a (apparent) poly-
morphic external programmatic interface, and a private actual-type hierarchy to support the
implementation of inheritance. That is, the pseudo-types are “public”, i.e., visible in the
API, whereas the actual types are “private”, i.e., visible only to widget programmers. This
usage of the terms public and private is analogous to Ada public and private types, but is
not implemented in terms of Ada private types.

3.4.1 Pseudo-Types and Compiled Data Structures

The Ada/Xt type hierarchy is actually composed of four parallel hierarchies: a hierarchy
of widget class pseudo-types, a hierarchy of widget instance pseudo types, and a hierarchy
of actual widget class and instance types. The programmatic interfaces to the toolkit are
implemented in terms of the pseudo-types, so called because in reality these types are merely
placeholders for the actual types, defined by widget programmers.

Figure 9 provides a pictorial representation of the Ada toolkit type implementation.
Widget class pseudo-types are arranged in an Ada subtype hierarchy; widget instance pseudo-
types are arranged in a (parallel) derived type hierarchy. Within the implementation of the
intrinsics and widgets, toolkit code performs unchecked conversions from Ada objects of type
pseudo-type to the corresponding actual type in the parallel actual-type hierarchy.

This set of parallel type hierarchies provides a number of important features for the
Ada/Xt implementation. The pseudo-type hierarchy allows the toolkit to be extensible
with respect to widget sets. By defining the intrinsics operations in terms of pseudo-types
rather than actual widget types (i.e., their Ada record representations), one set of intrinsics
functions can manipulate an open-ended number of actual widget types.

A further refinement of the pseudo-type hierarchy is possible due to the Ada derived type
feature. Occasionally, widget programmers may wish to define operations on widgets which
are accessible directly to the application programmer. For example, text edit widgets may
provide operations to retrieve the currently selected segment of text within the editor view.
2 In Ada/Xt, the widget programmer can define such operations on a widget. Subclasses
of this widget will “inherit” operations via Ada type derivation on the pseudo-types. The
operation will still be applicable on subclass instances because the code “inherited” will be
performing an unchecked type conversion to a record structure which is layout-compatible
with the subclass instance’s actual type. Thus, the pseudo/actual-type hierarchy in effect
augments Ada type derivation with type representation changes.

Note that the use of unchecked conversion from pseudo types to record type definitions in
the parallel actual-type hierarchy requires strict widget programmer control over the layout

3Note: for the most part, application programmers make application operations available to the widgets
to be executed by the widget or toolkit on behalf of the application. This kind of inversion is typical
of event-based programming, and distinguishes toolkit programming from “traditional” procedure-based
programming styles.

25 January 1990

3 DESIGN APPROACH

Pseudo-Type Hierarchy

STARS-RC-01000/001/00

24

Actual-Type Hierarchy

instance hioa.rchy—r_l I
class 1
class hierarc i 4 record type class 1_'
] Lot (Rl JC T IR T S e A o
Y Le
[| 1 K]
class 2_] J |
1 record type class 1
thecccrcnccccccacccrcrc e e ™
; T record type class 2
| - | —
—I class 3
! [
beeccmcccccccccccccanea—- -
. record type class 1
[record type class 2
class 4
. record type class 3
:
]
!
J
: r
1
v record type class 1
legend record type class 2
............ » unchecked conversion B
record type class 3

... .0 Ada derived type

-+ Ada subtype

Figure 9: Ada/Xt Widet Type Model

record type

class Al_

25 January 1990 STARS-RC-01000/001/00

3 DESIGN APPROACH 25

of the actual-type record definitions. That is, for an operation defined on object class 1 (in
figure 9) to work on an instance of object class 3, the actual representation of the record for
instances of class 1 and class 3 must be identical for the common prefix fields, i.e., for the
components defined in the record definition for class 1. Proper enforcement of this constraint
only can be ensured through use of Ada record representation clauses.

3.4.2 Packaging Widget Type Definitions

As indicated, a widget type definition consists of four distinct hierarchies, arranged as a
“public” and “private” widget definition interface. The public interface is defined in terms
of the pseudo types, and defines operations that are to be available to the application pro-
grammer.

The private interface is defined in terms of Ada record definitions which characterize the
object state for widget classes and instances. In order to ensure that widget subclasses share
a common data structure prefix with their ancestors in the superclass-subclass hierarchy, the
widget programmer must ezplicitly insert the record type definitions for the type hierarchy
of the subclass’s ancestors, and use Ada record representation clauses to encure the relative
ordering of these fields within the newly defined widget.

Figure 10 illustrates the packaging structure for defining widgets in the Ada/Xt toolkit.
This mechanism is quite similar to the method used in the C implementation, with the
major differences being the use of representation clauses, and the use of Ada derived types
to automate some of the inheritance process. Note that the Ada “with” hierarchy parallels
the superclass-subclass taxonomy defined by the logical widget class structure.

The Ada packaging scheme described in figure 10 has some interesting consequences
conerning order of elaboration. In short, the widget type taxonomy must be elaborated in
superclass to subclass order; this can be enforced through use of the pre-defined Ada pragma,
elaborate. Appendix C of this report illustrates the current UR-20 Ada/Xt implementation’s
widget packaging scheme by providing the full package specification and implementation for
the (opaque) widget type, simple_widget.

8.4.3 Subprogram and Resource Inheritance

The actual type hierarchy provides the data structures to support inheritance, but not the full
implementation. Inheritance of subprograms and resources (i.e., widget data fields accessible
to the application programmer by named reference) is performed once per widget class, at
run-time, in the Ada/Xt implementation. Although this is an implementation detail, it has
gome impact on the way widget programmers specify widget data structures.

Each time a widget is created (using zt.create.widget) the intrinsics check to see that the

3 An additional “with” dependency exists between the body of the public implementation and the private
specification for implementation purposes.

e

25 January 1990 STARS-RC-01000/001/00

3 DESIGN APPROACH 26
Public (Pseudo) Types Private (Actual) Types
Body

Spec Spec

Class 1 Class 1

I X)

Body Body =3

Spec Spec Spec Spec
Class 2 Class 2

4

@ . *
Spec Spec

Class 3 Class 3

Legend

A B B ‘‘withs’’ A

Figure 10: Widget Types - Ada/Xt Packaging Convention

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 27

widget class of the newly created widget has been initialized. If it has not been initialized,
the intrinsics invokes a class initialization procedure which passes, in superclass-to-subclass
order, the uninitialized widget class actual data structure to the class initialization procedure
defined for all widget classes (defined as the class_part_initialize operation in core_class).

Each class_part_initialize operation is responsible for performing subprogram inheritance
(besides other class initialization actions) of subprograms (“methods™) defined for the su-
perclass. The class_part.initialize code examines the procedure type fields of the subclass
structure passed to it. If any of these fields have special values (called “inherit” values),
the class_part_initialize operation will overwrite these fields with the subprogram reference
being inherited from the superclass. Thus, it is the responsibility of the widget programmer
to request inheritance of superclass methods by use of specially defined constants; it is also
the responsibility of the widget programmer to implement the class_part_initialize operation
to correctly implement inheritance of inheritable methods defined by widget classes.

Inheritance of resources is managed by the intrinsics (i.e., it is more fully automated). The
implementation of . 2source inheritance is similar to method inheritance: it is done during
a one-time initialization of a widget class via a superclass-to-subclass chaining. However,
instead of calling widget-specific initialization code, the intrinsics performs a resource list
merging and compilation process. The result is that each widget class instance has a list with
its resources, and the resources of all of its superclasses. The list is ordered in a subclass-to
superclass fashion, so that subclasses may “override” inherited resources. Thus, it is the
responsibility of the widget programmer to specify a list of resources which the intrinsics
will then “compile” and merge with other lists at class initialization time. This merging
is a run-time optimization which bypasses the need for inheritance searches for referenced
resources.

4 The Ada/Xt Design

The design approach described in the previous section allows the Ada specification of data
types and functional interface to follow the C specification quite closely. The following
sections describing the Ada specifications for the Xt Intrinsics follow the C specifications
described in [3]. Each section corresponds to a similar chapter in (3], and the specifications
should be read in conjunction with [3]. Where the semantics of the subprograms differ from
the C version, the differences are noted, otherwise the semantics are as described in (3]

Obviously, there are differences between the Ada specification and the C specification.
Most of the differences can be categorized into the following categories:

e C functions with side effects
e pointers versus out parameters

o length for list parameters

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 28

e argument list assignment
o representation of resource lists

e procedure types

Any C function returning a value and having side effects on parameters has been changed
to an Ada procedure with one additional argument whose type is the return value type. Since
C does not allow out parameters to functions, pointers are used. Wherever possible out
parameters of the base type are used instead of pointers to the base type. Ada provides
the length attribute for arrays which can be used instead of supplying a count or length for
arrays passed as parameters. The C count parameters are removed wherever possible. The
next two differences are closely related to resource management and are discussed at length
in the resource management section.

Procedure type specification in Ada is described in the design approach, and all procedure
type specifications are provided as pseudo type declarations at the end of each section. These
pseudo type declarations represent instantiations of package templates. The following is the
template for procedure type packages:

package <procedure type name>_procs is

type <procedure type name>_proc_rep is limited private;
type <procedure type name>_proc is access xt_callback_proc_rep;

function xt_inherit_<procedure type name>
Teturn <procedure_type_name>;

procedure call (the_proc_id : <procedure type name>;
<the procedure arguments>);
generic
proc.id : in out <procedure type name>_proc;
with procedure the_proc (<the procedure arguments>);
package procedure_pointer is
end procedure_pointer;

rivate
P -~ procedure_contzol_block is implementation defined
type <procedure type name>_proc_rep is new procedure_control_block;
end <procedure type name>_procs;

Procedure type package definitions appear in the specification as:

pseudo_type <procedure type name> is
new proc_type(<the procedure arguments>);

For example, the procedure t!pe zt_widget_class_proc, which is a procedure with a single
widget_class argument, is defined as:

pseudo_type xt_widget_class_proc is
new proc_type(wc: widget_class);

25 January 1990 STARS-RC-U1000/001/00

4 THE ADA/XT DESIGN 29

. A number of fundamental data types are implementation dependent, and are noted in the
specifications. Additional types are defined as private, but left unspecified. These represent
opaque data types such as translation tables and resource databases and are not defined
in these specifications. The specifications use data types defined in the Ada Xlib bindings.
These are contained in the z_windows package specification and are not included in this
document.

Packaging Considerations

In the following sections, the types and subprogram interfaces which comprise the system-
independent Ada/X Toolkit specification are defined as a series of packages. These packages
encapsulate groups of related types and operations, and in many cases correspond exactly
with groups of related operations as defined in [3]. However, the packaging structure de-
fined in the following sections should be viewed as a guideline for implementing conformant
Ada/Xt implementations; alternative packaging models may be desirable or even necessary
under some circumstances.

For example, the UR20-UI Ada/Xt implementation defines the pre-defined widget and
widget classes in separately compiled Ada packages. This packaging model makes the core
widget definitions dependent upon the intrinsics package, which defines the type marks for
widget_class and widget. This packaging scheme relies upon the implicit assumption that
there exists a mechanism to perform type conversions between objects of type e.g., widget -
implemented in UR20’s implementation as a system.address — to objects of type core_widget.

. Should this assumption prove invalid on a given architecture (e.g., an architecture with two
addressing modes, such as 32 and 48 bit addressing modes, might implement system.address
as a variant record), alternative implementations may impose alternative packaging models.
For example, in the above multi-address type architecture, the pre-defined core type could
be defined in a subpackage of the intrinsics package; then type widget could be defined as an
access to type core. This would bypass the need to convert system address types to widget
types ¢.

’ The following specifications try to strike a balance between sufficient conciseness and
overspecification. Specific type representations or packaging decisions should be considered
as very strong recommendations. For example, the decision to represent a list type as an
unconstrained array of some base type should be considered part of the system-independent
specification; also, the decision to include a type within a package is a similar “strong rec-
ommendation.” In many cases, however, type definitions are not given a package context; in
these cases, implementations should consider themselves free to determine their own pack-
aging.

gl]gigure 11 provides a top-level overview of the packaging structure for the UR20-Ul

4 Although it would still be necessazy to perform type conversions between distinct access types.

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 30

Ada/Xt implementation. The figure does-not include all of the pre-defined widget type
dependencies; those that are included are representative of the packaging model.

Note that the following specifications assume a foundational set of X types, as for example
defined in the SAIC STARS Foundations Ada/Xlib bindings. In the following specifications,
such types are prefixed by “x_windows.type,” even though the Ada/Xlib bindings may require
deeper qualification to subpackages. Types that are not preceded by the x_windows package
name can be assumed to be either intrinsic types to Ada, or defined by Ada/Xt.

Finally, note that some types are referenced before they are defined. This is necessary in
order to associate type declarations with appropriate operations.

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 3
intrinsics (spec) corepublic (spec) coreprivate (spec)
subpackages: {] $
xt_procedure._types core_public (body)

xtutilities

xt_initializers

xt_instance management
xt_composite management composite.public (spec)
xt_geometry management
xt_popup management composite public (body)_

xt_class management

xt_event management

xt_callbacks

xt_convenience

. xt_resource management
xt_translation.management

intrinsics (body)

Legend

A— B A "withs" B

Figure 11: UR20-UI Ada/Xt Packaging Implementation

25 January 1990 STARS-RC-01000/001/00
4 TEE ADA/XT DESIGN 32

4.1 Widgets

The basic abstraction in the toolkit is the widget and its associated widget class. The three
basic widget types

1. Core
2. Composite
3. Constraint

are described here. The structures representing these three widget types map directly to
the C data structures. See 1.3 of [3] for a complete discussion of widgets. All widgets are
derived types of an implementation defined type widget or subclasses of widget, and widget
classes are subtypes of an implementation defined type widget_class or subclasses of type
widget_class. widget and widget_class are usually some form of physical address to the data
structures described in this section. The intrinsics provide conversion routines for all the
widget and widget class types known to the intrinsics. The default values for the widget
types described here are the same as specified in 1.3 of [3].

4.1.1 Core Widgets

The following types are assumed to be visible to the core_private package specification, and
are not defined elsewhere in this report:

type widget is implementation_defined;

type widget_class is implementation_defined;

type widget_list is array (natural range <>) of widget;
type widget_list_ptr is access widget_list;

type cardinal is range O .. implementation_defined;

subtype position is cardinal;

subtype dimension is cardinal;

subtype xt_offset is cardinal;

type xt_offset_list is array (natural range <>) of xt_offset;
type xt_offset_list_ptr is access xt_offset_list;

type xt_string is access string;

type xt_boolean is implementation_defined;
type xt_version_type is implementation_defined;

The following package defines the pre-defined core widget class and instance types:

25 January 1990

4

THE ADA/XT DESIGN

package core_private is

-=1) define widget_part (core is special case -- no nested records)

core_part_size : constant cardinal := implementation_defined;
type core_part is record
self : widget;
widgetclass : widget_class;
parent : widget;
the_xrm_name: x_windows.xrm_name;
being_destroyed : xt_boolean;
destroy.callbacks: xt_callback_list_ptr;
constraints : x_windows.caddr_t;
x ¢ position;
y ¢ position;
width : dimension;
height: dimension;
border_width : dimension;
sanaged : xt_boolean;
sensitive: xt_boolean;
ancestor_sensitive : xt_boolean;
event_table : xt_event_table;
tm : xt_TM_Rec;
accelerators : xt_translations;
border_pixel : x_windows.pixel;
border_pixmap : x_windows.pixmap;
popup.list : widget_list_ptr;
name : xt_string;
my._screen : x_windows.screen;
my_colormap: x_windows.color_map;
my_wvindow : x_windows.window;
depth : cardinal;
background_pixel : x_windows.pixel;
background_pixmap : x_windows.pixmap;
visible : xt_boolean;
mapped_vhen_managed : xt_boolean;
end record;

type core_part_pointer is access core_part;
type core_widget_pointer is access core_part;

2) define class part

core_class_part_size : constant cardinal := implementation_defined;
type core_class_part is record

superclass : widget_class;

class_name : xt_string;

widget_size: cardinal;

class_initialize : xt_proc;

class_part_initialize : xt_widget_class_proc;

class_inited : xt_boolean;

dinitialize : xt_init_proc;

STARS-RC-01000/001/00

33

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 34

. initialize_hook : xt_args_proc;
realize : xt_realize_proc;
actions : xt_action_list_ptr;
resources: xt_resource_list_ptr;
the_xrm_class: x_windows.xrm_class;
compress_motion : xt_boolean;
compress_exposure : xt_boolean;
compress_interleave : xt_boolean;
visible_interest : xt_boolean;
destroy : xt_widget_proc;
resize : xt_widget_proc;
expose : Xt_expose_proc;
set_values : xt_set_values_func;
set_values_hook : xt_args_func;
set_values_almost : xt_almost_proc;
get_values_hook : xt_args_proc;
accept_focus : xt_accept_focus_proc;
version : xt_version_type;
callback_private : xt_offset_list_ptr;
tm_table : xt_string;
query._geometry : xt_geometry_handler;
display_accelerator : xt_string_proc;
extension : x_windows.caddr_t;
end record;

-- types for conversion operations:

type core_class_part_pointer is access core_class_part;
’ type core_class_pointer is access core_class_part;

-- allocate the class constant

function to_widget_class is new unchecked_conversion(
source => core_class_pointer,
target => widget_class);

the_core_class : constant widget_class :=
to_widget_class (new core_class_part);

end core_private;

4.1.2 Composite Widgets

-- superclass context
with core_private; use core_private;
package composite_private is

composite_part_rec_size : constant cardinal := implementation_defined;
type composite_part_rec is record

children : widget_list_ptr;

num_slots : cardinal;

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 35

. insert_position : xt_order_proc;
end recoxd;

composite_widget_size : constant cardinal :=
core_part_size + composite_part_rec_size;

type composite_widget_rec is record
core_part : core_private.core_part;
composite_part : composite_part_rec;

end record;

for composite_widget_rec use record at mod implementation_defined;
core_part
at 0
range O .. core_part_size - 1;
composite_part
at 0

Tange core_part_size .. core_part_size ¢ composite_part_rec_size - 1;
end record;

type composite_part_pointer is access composite_part_rec;
type composite_widget_pointer is access composite_widget_rec;

composite_class_part_rec_size : constant cardinal := implementation_defined;
type composite_class_part_rec is recoxd

geometry_handler : xt_geometry_handler;

change_managed : xt_widget_proc;

insert_child : xt_widget_proc;

delete_child : xt_widget_proc;

extension : x_windows.caddr_t;
end record;

composite_class_part_size : constant cardinal :=
core_class_part_size + composite_class_part_rec_size;

type composite_class_part is record
core_class_part : core_private.core_class_part;
composite_class_part : composite_class_part_rec;

end record;

for composite_class_part use record at mod implementation_defined;
core_class_part
at 0
range O .. core_class_part_size - 1;
compogite_class_part
at 0
range core_class_part_size .. composite_class_part_size - 1;
end record;

type composite_class_part_pointer is access composite_class_part_rec;
type composite_class_pointer is access composite_class_part;

-- allocate the class constant

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 36

function to_widget_class is new unchecked_conversion(
source s> composite_class_pointer,
target s> widget_class);

the_composite_class : constant widget_class :=
to.vidget_class (new composite_class_part);

end composite_private;

4.1.8 Constraint Widgets

== superclass context
with composite_private; use composite_private;
with core_private; use core_private;

package constraint_private is

constraint_part_rec_size : constant cardinal := O;
type constraint_part_rec is record

null;
end record;

constraint_widget_size : constant cardinal :=
composite_widget_size + constraint_part_rec_size;
type constraint_widget_rec is record
core_part : core_private.core_part;
composite_part : composite_private.composite_part_rec;
constraint_part : constraint_part_rec;
end record;

for constraint_widget_rec use record at mod implementation_defined;
core_part
at O
range O .. core_part_size - 1;
composite_part
at 0
range core_part_size .. composite_widget_size - 1;
constraint_part
at 0
Tange composite_widget_size .. constraint_widget_size - 1;
end record;

type constraint_part_pointer is access constraint_part.rec;
type constraint_widget_pointer is access constraint_widget_rec;

constraint_class_part_rec_size : constant cardimal := implementation_defined;
type constraint_class_part_rec is record

resources : xt_resource_list_ptr;

constraint_size : cardinal;

initialize : xt_init_proc;

destroy : xt_widget_proc;

set_values : xt_set_values_func;

25 January 1990 STARS-RC-01000/001/00

4

THE ADA/XT DESIGN 37

extension : x_windows.caddr_t;
end record;

constraint_class_part_size : constant cardinal :=
composite_class_part_size + constraint_class_part_rec_size;

type constraint_class_part is record
core_class_part : core_private.core_class_part;
composite_class_part : composite_private.composite_class_part_rec;
constraint_class_part : constraint_class_part_rec;

end record;

for constraint_class_part use record at mod implementation_defined;
core_class_part
at 0
range O .. core_class_part_size - 1;
composite_class_part
at 0
Tange core_class_part_size .. composite_class_paxt_size -~ 1;
constraint_class_part
at 0
range composite_class_part_size .. constraint_class_part_size - {;
end record;

type constraint_class_part_pointer is access constraint_class_part_rec;
type constraint_class_pointer is access constraint_class_part;

allocate the class constant

function to_widget_class is new unchecked_conversion(
source => constraint_class_pointer,
target => widget_class);

the_constraint_class : constant widget_class :=
to_widget_class (new constraint_class_part);

end constraint_private;

4.1.4 Widget Class and Superclass Look Up

function xt_class (w : widget) return widget_class;
function xt_superclass (v : widget) return widget_class;
function xt_is_subclass (w : widget;

wc : widget_class) return boolean;

procedure xt_check_subclass (w ¢ widp-¢t;

we ¢ widget_class;
message : string);

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 38

4.2 Widget Instantiation

This section describes widget instantiation. Refer to chapter 2 of [3] for a complete descrip-
tion of widget instantiation. The following is the Ada programmatic interface to functions
and data structures required for widget instantiation.

4.2.1 Toolkit Initialization

The following types are assumed to be visible to xt_initializers, and may be declared within
this package:

type application_context is private;

The package specification zt_initializers specifies subprograms and data structures used
in toolkit initialization.

package xt_initializers is
procedure xt_toolkit_initialize;

function xt_create_application_context return application_context;

procedure xt_destroy_application_context
(context : in out application_context);

function xt_vidget_to_application_context

(w : widget) return application_context;
procedure xt_display_initialize (app_context application_context;
the_display x_windows.display;
application_name string;
application_class : string;
options : xrm_option_desc_rec_list;
arge : in out cardinal;
argv : in out string);

procedure xt_open_display (app_context application_context;

display_string string;
application_name string;
application_class : string;

es ¢e oo ea e oo e e

options xrm_option_desc_rec_list;
argce in out cardinal;
argv in out string;

return_display out x_windows.display);
procedure xt_close_display (the_display : in out x_windows.display);

end xt_initializers;

25 January 1990 STARS-RC-01000/001/00
4 THE ADA/XT DESIGN 39

4.2.2 Loading the Resource Database

function xt_database (the_display : x_windows.display) return
x_windows.xrm_database;

4.2.3 Parsing the Command Line

Although Ada compilers differ in handling the Unix notion of argc and argv, the Ada Toolkit
recognizes the standard X command line options. The type definitions for command line
option description records are:

type xrm_option_kind is (xrm_option_no_arg,
xrm_option_is_arg,
xrm_option_sticky_arg,
xrm_option_set_arg,
xrm_option_res_arg,
xrm_option_skip_arg,
xrm_option_skip_line);

type xrm_option_desc_rec is record

option : xt_string;
resource_name : xt_string;
arg_kind : xrm_option_kind;
value : x_windows.caddr_t;

end record;
type xrm_option_desc_list is
array (Fatural range <>) of xrm_option_desc_rec;

4.2.4 Creating Widgets

Widget creation in Ada differs only in its treatment of argument lists. Argument lists in C
are essentially lists of untyped data; a problem for strongly typed languages like Ada. Since
argument lists are closely related to resource management, a discussion of the handling of
these lists in Ada is deferred to the section on resource management.

The following types are assumed to be visible to package xt_instance_management, and
can be defined within this package:

subtype xt_arg_val isx_windows.caddr_t;
type xt_arg is record
name : xt_string;
value : xt_arg_val;
end record;
type arg_list is array (natural range <>) of xt_arg;
type arg_list_ptr is access arg_list;

The following package declaration provides basic instance manipulation primitives:

package xt_instance_management is

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 40
function xt_create_widget (name ~: string;
of _clasg : widget_class;
parent : widget;
args : arg_list) return widget;

function xt_app_create_shell (application_name : string;

application_class : string;
we ¢ widget_class;
the_display : x_windows.display;
args : arg_list)
return widget;
procedure xt_add_callback (w : widget;
callback_name : string;
callback s xt_callback_proc;

client_data : x_windows.caddr_t);

procedure xt_create_windovw (w ¢ widget;
win_class : x_windows.window_class;
the_visual : x_windows.visual;
value_mask : xt_value_mask;

attributes : x_windows.x_set_window_attributes);

procedure xt_realize_vidget (w : widget);

procedure xt_unrealize_widget (w : widget);

procedure xt_destroy._vidget (w : widget);

function xt_is_realized (w : widget) return boolean;

function xt_display (w : widget) return x_windows.display;

function xt_parent (w : widget) return widget;

function xt_screen (v : widget) return x_windows.screen;

function xt_window (v : widget) return x_windows.window;

end xt_instance_management;

4.3 Composite Widget Management

The package specification zf_composite_management specifies the subprogram units providing
functions for managing children of composite widgets. These subprograms are described in

chapter 3 of [3].
package xt_composite_management is

function xt_is_composite (w : widget) return boolean;

procedure xt_manage_children (wlist : wvidget_list);

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 41

procedure xt_manage_child (child : widget);
procedure xt_unmanage_children (wlist : widget_list);
procedure xt_unmanage_child (wlist : widget_list);
function xt_is_managed (v : widget) returm boolean;

function xt_create_managed_widget (name ¢ string;
of_class : widget_class;
parent : widget;
args : arg_list) return widget;

procedure xt_set_mapped_when_managed (w : in widget;
map_wvhen_manged : boolean := true);

end xt_composite_management;

4.8.1 Procedure Types in Composite Widgets

The following package specification describes the procedure type for the insert_child and
delete_child procedures used for adding/deleting children of a composite widget.

pseudo_type xt_widget_proc is
new proc_type(the_widget : in out widget);

The procedure type for specifying the insertion order of children, the insert_position field
of a composite widget, is:

pseudo_type xt_order_proc is
new proc_type(the_widget : in out widget);

4.4 Shell Widgets

The following data structures specify the various shell widgets described in chapter 4 of [3].
The shell widgets are:

o Shell
Override Shell

WM Shell

Vendor Shell

e Transient Shell

e Top Level Shell

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 42

e Application Shell

== superclass context:
with composite_private; use composite_private;
with core_private; use core_private;

package shell_private is
-- Define various shell parts and widget record extensions
-- shell_widget

shell_part_rec_size : constant cardinal := implementation_defined;
type shell_part_xrec is record
geometry : xt_string;
create_child_popup_proc : xt_proc;
gradb kind : xt_grab_kind;
spring_loaded : xt_boolean;
popped_up : xt_boolean;
allov_shell_resize : xt_boolean;
client_specified : xt_boolean;
save_under : xt_boolean;
override_redirect : xt_boolean;
popup_callback : xt_callback_list_ptr;
popdown_callback : xt_callback_list_ptr;
ond record;

shell _widget_size : constant cardinal :=
composite_widget_size + shell_part_rec_size;

type shell_widget_xrec is recoxd
core_part : core_private.core_part;
composite_part : composite_private.composite_part_rec;
shell_part : shell_part_rec;

end record;

for shell_widget_rec use record at mod implementation_defined;
core_part
at 0
range O .. core_part_size - 1;
composite_part
at 0
range core_part_size .. composite_widget_size - 1;
shell_part
at 0
range composite_widget_size .. shell_widget_size - 1;
end record;

type shell_part_pointer is access shell_part_rec;
type shell_widget_pointer is access shell_widget_rec;

-- override_shell _widget

override_shell_part_rec_size : constant cardinal := implementation_defined;

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 43

‘ type override_shell part_rec is record
null;
end record;

override_shell widget_size : constant cardinal :=
shell _widget_size + override_shell _part_rec_size;
type override_shell widget_rec is record
core_part : core_private.core_part;
composite_part : composite_private.composite_part_rec;
shell_part : shell_part_rec;
override_shell_part : override_shell_part_rec;
end record;

for override_shell_widget_rec use record at mod implementation_defined;
core_part
at 0
range O .. core_part_size - 1;
composite_part
at 0
range core_part_size .. composite_widget_size - §;
shell_part
at 0
range composite_widget_size .. shell_widget_size ~ 1;
override_shell_part
at 0
range shell_widget_size .. override_shell_widget_size - 1;
end record;

\ type override_shell part_pointer is access override_shell_part_rec;
type override_shell_widget_pointer is access override_shell_widget_rec;

-- wm_shell _widget

wm_shell_part_rec._size : constant cardinal := implementation_defined;
type wm_shell_part_rec is record

title : xt_string;

wn_timeout : x_windows.time;

wvait_for_wm : xt_boolean;

transient : xt_boolean;

size_hints : x_windows.caddr_t;

wn_hints : x_windows.caddr_t;
ond record;

wm_shell_widget_size : constant cardinal :=
override_shell_widget_size + wm_shell _part_rec_size;
type wm_shell _widget_rec is record
core_part : core_private.core_part;
composite_part : composite_private.composite_part_rec;
shell_part : shell_part_rec;
override_shell _part : override_shell_part_rec;
wm_shell_part : wm_shell_part_rec;
end record;

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 44

. for wm_shell_widget_rec use record at mod implementation_defined;
core_part
at 0
range O .. core_part_size - 1;
composite_part
at 0O
range core_part_size .. composite_widget_size - 3;
shell part
at 0
range composite_widget_size .. shell_widget_size - 1;
override_shell_part
at 0
range shell _widget_size .. override_shell widget_size - 1;
wm_shell _part
at 0
range override_shell _widget_size .. wn_shell _widget_size - 1;
end record;

type wm_shell_part_pointer is access wm_shell_part_rec;
type wm_shell _widget_pointer is access wm_shell _widget_rec;

== vendor_shell widget

vendor_shell_part_rec_size : constant cardinal := implementation_defined;
type vendor_shell_part_rec is record

vendor_specific : implementation_defined;
end record;

‘ vendor_shell widget_size : constant cardinal :=
wm_shell _widget_size + vendor_shell_part_rec_size;
type vendor_shell_widget_rec is record
core_part : core_private.core_part;
composite_part : composite_private.composite_part_rec;
shell _part : shell_part_rec;
override_shell_part : override_shell_part_rec;
wm_shell_part : wm_shell_part_rec;
vendor_shell_part : vendor_shell_part_rec;
end record;

for vendor_shell_widget_rec use record at mod implemetation_defined;
core_part
at 0
range O .. core_part_size - 1;
composite_part
at 0
range core_part_size .. composite_widget_size - 1;
shell_part
at 0)
range composite_widget_size .. shell_widget_size - 1;
override_shell_part
at 0

25 January 1990

4 THE ADA/XT DESIGN 45

zange shell widget_size .. override_shell_widget_size - 1;
wm_shell_part -

at 0

range override_shell _widget_size .. wm_shell _widget_size - 1;
vendor_shell _part

at 0

range wm_shell _widget_size .. vendor_shell_widget_size - §;

end record;

type vendor_shell_part_pointer is access vendor_shell_part_rec;
type vendor_shell_widget_pointer is access vendor_shell_widget_rec;

-=- transient_shell_widget

transient_shell_part_rec_size : constant cardinal := O;
type transient_shell_part_rec is record

anull;
end record;

transient_shell_widget_size : constant cardinal :e=
vendor_shell_widget_size + transient_shell_part_rec_size;
type transient_shell_widget_rec is record
core_part : core_private.core_part;
composite_part : composite_private.composite_part_rec;
shell_part : shell_part_rec;
override_shell _part : override_shell_part_rec;
wm_shell _part : wm_shell _part_rec;
vendor_shell_part : vendor_shell_part_rec;
transient_shell _part : transient_shell_part_rec;
end record;

for transient_shell_widget_rec use record at mod implementation._defined;

core_part
at 0
range O .. core_part_size - 1;
composite_part
at 0
range core_part_size .. composite_widget_size - 1;
shell _part

at 0

range composite_vidget_size .. shell widget_size - 1;
override_shell_part

at 0

range shell_widget_size .. override_shell_widget_size - 1;
wm_shell_part

at 0

range override_shell_widget_size .. wm_shell _widget_size - 1;
vendor_shell _part

at 0]

range wm_shell_widget_size .. vendor_shell_vidget_size - 1;
transient_shell _part

at 0

STARS-RC-01000/001/00

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 46

range vendor_shell_widget_size .. transient_shell_widget_size - 1;
end recoxd;

type transient_shell_part_pointer is access transient_shell_part_rec;
type transient_shell_widget_pointer is access transient_shell_widget_rec;

== top._level_shell _widget

top_level_shell _part_rec_size : constant cardinal := implementation_defined;
type top_level_shell_part_xrec is record

icon_name : xt_string;

iconic : xt_boolean;
end record;

top_level_shell widget_size : constant cardinal :=
transient_shell _widget_size + top_level_shell _part_rec_size;
type top_level_shell _vidget_rec is record
core_part : core_private.core_part;
composite_part : composite_private.composite_part_rec;
shell_part : shell_part_rec;
override_shell_part : override.shell_part_rec;
wm_shell_part : wm_shell_part_rec;
vendor_shell_part : vendor_shell_part_rec;
transient_shell_part : transient_shell_part_rec;
top_level_shell_part : top_level_shell_part_rec;
end record;

for top_level_shell_widget_rec use record at mod implementation_defined;

core_part
at 0
range 0 .. core_part_size - 1;
composite_part
at 0
range core_part_size .. composite_widget_size - 1;
shell_part

at 0

range composite_widget_size .. shell_widget_size - i;
override_shell_part

at 0

range shell_widget_size .. override_shell widget_size - 1;
wm_shell_part

at 0))

range override_shell_vidget_size .. wm_shell widget_size - 1;
vendor_shell_part

at 0)

range wm_shell _widget_size .. vendor_shell _widget_size - 1;
transient_shell_part

‘t o . »]

range vendor_shell widget_size .. transient_shell_widget_size - 1;
top_level_shell_part

at 0

range transient_shell_widget_size .. top.level_shell _widget_size - 1;

25 January 1990

4 THE ADA/XT DESIGN

STARS-RC-U1000/001/00

47

end record;

type top_level_shell_part_pointer is access top_level_shell_part_rec;
type top_level_shell_widget_pointer is access top_level_shell_widget_rec;

== applicaticz_shell_widget

application_shell_part_rec_size :
constant cardinal := implementation_defined;
type application_shell_part_rec is record
class : widget_class;
the_xxrm_class : x_windows.xrm_class;
arge : cardinal;
W\rgv : argv._type;
end recorxd;

application_shell _widget_size : constant cardinal :=
top_level_shell _widget_size + application_shell_part_rec_size;
type application_shell_widget_rec is record
coze_part : core_private.core_part;
composite_part : composite_private.composite_part_rec;
shell_part : shell_part_rec;
override_shell_part : override._shell _part_rec;
wm_shell_part : wm_shell_part_rec;
vendor_shell_part : vendor_shell_part_rec;
transient_shell_part : transient_shell_part_rec;
top_level_shell_part : top._level_shell_part_rec;
application_shell _part : application_shell_part_rec;
end recorxd;

for application_shell_widget_rec use record at mod implementation_defined;

core_part
at 0
range O .. core_part_size - 1;
composite_part
at 0
range core_part_size .. composite _widget_size - 1;
shell_part

at 0

range composite_vidget_size .. shell_widget_size - 1;
override_shell_part

at 0

range shell_widget_size .. override_shell_widget_size - 1;
wm_shell _part

at 0)

range override_shell_widget_size .. wm_shell_widget_size - 1;
vendor_shell_part

at 0

range wm_shell_vidget_size .. vendor_shell_widget_size - 1;
transient_shell_part

at 0
range vendor_shell_widget_size .. transient_shell_widget_size - 1;

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 48

. top.level _shell_part
at 0

range transient_shell_widget_size .. top_level_shell _widget_size - 1;
application_shell_part
at 0
range top_level_shell _widget_size ..
application_shell_widget_size - 1;
end record;

type application_shell_part_pointer is access application_shell_part_rec;
type application_shell_widget_pointer is access
application_shell_widget_rec;

-- define class records for shell widget classes
== shell_class

shell _class_part_rec_size : constant cardinal := implementation_defined;
type shell_class_part_rec is record

extension : x_windows.caddr_t;
end record;

shell _class_pert_size : constant cardinal :=
composite_class_part_size + shell_class_part_rec_size;

type shell_class_part is record
core_class_part : core_private.core_class_part;
composite_class_part : composite_private.composite_class_part_rec;
shell_class_part : shell_class_part_rec;

' end record;

for shell_class_part use record at mod implementation_defined;
core_class_part
at 0
range O .. core_class_part_size - 1;
composite_class_part
at 0
range core_class_part_size .. composite_class_part_size - 1;
shell_class_part
at 0)
range composite_class_part_size .. shell_class_part_size - i;
end record;

type shell_class_part_pointer is access shell_class_part_rec;
type shell_class_pointer is access shell_class_part;

-- override_shell_class

override_shell_class_part_rec_size :
constant cardinal := implementation_defined;
type override_shell_class_part_rec is record
extension : x_windows.caddr_t;
end record;

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 49

override_shell_class_part_size : constant cardinal :=
shell_class_part_size + override_shell_class_part_rec_size;

type override_shell_class_part is xecord
core_class_part : core_private.core_class_part;
composite_clasg_part : composite_private.composite_class_part_rec;
shell_class_part : shell_class_part_rec;
override_shell_class_part : override_shell_class_part_rec;

end record;

for override_shell_class_part use record at mod implementation_defined;
core_class_part
at 0
range 0 .. core_class_part_size - 1;
composite_class_part
at 0
range core_class_part_size .. composite_class_part_size - §;
shell_class_part
at 0
range composite_class_part_size .. shell_class_part_size - §;
override_shell_class_part
at 0
Tange shell_class_part_size .. override_shell_class_part_size - 1;
end record;

type override_shell_class_part_pointer is
access override_shell_class_part_rec;
type override_shell_class_pointer is access override_shell_class_part;

-- wm_shell_class

wm_shell_class_part_rec_size : constant cardinal := implementation_defined;
type wm_shell_class_part_rec is record

extension : x_windows.caddr_t;
end record;

wm_shell_class_part_size : constant cardinal :=
override_shell _class_part_size + wm_shell_class_part_rec_size;

type wm_shell_class_part is record
core_class_part : core_private.core_class_part;
composite_class_part : composite_private.composite_class_part_rec;
shell_class_part : shell_class_part_rec;
override_shell_class_part : override_shell_claes_part_rec;
wm_shell_class_part : wm_shell_class_part_rec;

end record;

for wm_shell_class_part use record at mod implementation_defined;
core_class_part
at 0
range O .. core_class_part_size - 1;
composite_class_part
at 0

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 50

range core_class_part_size .. composite_class_part_size - 1;
. shell_class_part
at O
range composite_class_part_size .. shell_class_part_size - 1;
override_shell_class_part
at 0
range shell_class_part_size .. override_shell_class_part_size - 1;
wnm_shell_class_part
at 0
range override_shell_class_part_size .. wm_shell_class_part_size - {;
end record;

type wm_shell_class_part_pointer is access wm_shell_class_part_rec;
type wm_shell_class_pointer is access wm_shell_class_purt;

-- vendor_shell_class

vendor_shell_class_part_rec_size :
constant cardinal := implementation_.defined;
type vendor_shell_class_part_rec is record
extension : x_windows.caddr_t;
end record;

vendor_shell _class_part_size : constant cardinal :=
wm_shell_class_part_size ¢ vendor_shell_class_part_rec_size;

type vendor_shell_class_part is record
core_class_part : core_private.core_class_part;
composite_class_part : composite_private.composite_class_part_rec;
shell_class_part : shell_class_part_rec;
override_shell_class_part : override_shell_class_part_rec;

. wm_shell_class_part : wm_shell_class_part_rec;

vendor_shell_class_part : vendor_shell.class_part_xec;

end record;

for vendor_shell_class_part use record at mod implementation_defined;
core_class_part
at 0
range O .. core_class_part_size - 1;
composite_class_part
at 0)
range core_class_part_size .. compogsite_class_part_size - 1;
shell_class_part
at O .
range composite_class_part_size .. shell_class_part_size - 1;
override_shell_class_part
at 0
range shell_class_part_size .. override_shell_class_part_size - 1;
wm_shell_class_part
at 0)
range override_shell_class_part_size .. wm_shell_class_part_size - 1;
vendor_shell_class_part
at 0

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 51

range wm_shell_class_part_size ..
vendor_shell_class_part_size - 1;
end record;

type vendor_shell_class_part_pointer is access vendor_shell_class_part_rec;
type vendor_shell_class_pointer is access vendor_shell_class_pert;

-- transient_shell_class

transient_shell_class_part_rec_size :
constant cardinal := implementation_defined;

type transient_shell_class_part_rec is record
extension : x_windows.caddr_t;
end record;

transient_shell class_part_size : constant cardinal :e=
vendor_shell_class_part_size + transient_shell_class_part_rec_size;

type transient_shell_class_part is record
core_class_part : core_private.core_class_part;
composite_class_part : composite_private.composite_class_part_rec;
shell _class_part : shell_class_part_rec;
override_shell_class_part : override_shell_class_part_rec;
wm_shell_class_part : wm_shell_class_part_rec;
vendor_shell_class_part : vendor_shell_class_part_rec;
transient_shell_class_part : transient_shell_class_part_rec;

end record;

for transient_shell_class_part use record at mod implementation_defined;

core_class_part
at 0
range O .. core_class_part_size ~ 1;
composite_class_part

at 0

range core_class_part_size .. composite_class_part_size - 1;
shell_class_part
at 0
range composite_class_part_size .. shell_class_part_size - 1;
override_shell_class_part

at 0

range shell_class_part_size .. override_shell_class_part_size - 1;
wm_shell_class_part

at O '

range override_shell_class_part_size .. wm_shell_class_part_size - 1;
vendor_shell_class_part

at 0

range wm_shell_class_part_size ..

vendor_shell _class_part_size - §;

transient_shell_class_part

at 0

range vendor_shell_class_part_size ..

transient_shell_class_part_size - 1;

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 52

end recoxd;

type transient_shell_class_part_pointer is
access transient_shell_class_part_rec;
type transient_shell_class_pointer is
access transient_shell_class_part;

~-= top_level_shell_class

top_level_shell_class_part_rec_size :
constant cardinal := implementation_defined;
type top_level_shell_class_part_rec is record
extension : x_windows.caddr_t;
end record;

top_.level_shell_class_part_size : constant cardinal :=
transient_shell_class_part_size + top_level_shell_class_part_rec_size;

type top_level_shell_class_part is record
core_class_part : core_private.core_class_part;
composite_class_part : composite_private.composite_class_part_rec;
shell_class_part : shell_class_part_rec;
override_shell_class_part : override_shell_class_part_rec;
wm_shell_class_part : wm_shell_class_part_xec;
vendor_shell_class_part : vendor_shell_class_part_rec;
transient_shell_class_part : transient_shell_class_part_rec;
top_level_shell_class_part : top_level_shell_class_part_rec;

end record;

for top.level_shell_class_part use record at mod implementation_defined;

core_class_part
at 0
range O .. core_class_part_size - 1;
composite_class_part

at O

range core_class_part_size .. composite_class_part_size - i;
shell_class_part
at 0
range composite_class_part_size .. shell_class_part_size - 1;
override_shell_class_part

at 0

range shell_class_part_size .. override_shell_class_part_size - 1;
wm_shell_class_part

at 0)

range override_shell_class_part_size .. wm_shell_class_part_size - 1;
vendor_shell_class_part

at 0

range wm_shell_class_part_size ..

vendor_shell_class_part_size - 1;

transient_shell_class_part

at 0

range vendor_shell_class_part_size ..

transient_shell_class_part_size - 1;

25 January 1990 STARS-RC-01000/001/00
4 THE ADA/XT DESIGN 53

. top_level_shell_class_part
at 0
range transient_shell_class_part.size ..
top_level_shell_class_part_size - 1;
end record;

type top_level_shell_class_part_pointer is
access top_level_shell_class_part_rec;
type top_level_shell_class_pointer is
access top_level_shell_class_part;

-~ application_shell_class

application_shell_class_part_rec_size :
constant cardinal := implementation_defined;

type application_shell_class_part_zec is record
extension : x_windows.caddr_t;

end record;

top_level_shell_class_part_size + application_shell_class_part_rec_size;
type application_shell_class_part is recoxd
core_class_part : core_private.core_class_part;
composite_class_part : composite_private.composite_class_part_rec;
shell _class_part : shell_class_part_rec;
override_shell_class_part : override_shell_class_part_rec;
wm_shell_class_part : wm_shell_class_part_rec;
vendor_shell_class_part : vendor_shell_class_part_rec;
transient_shell_class_part : transient_shell_class_part_rec;
. top_level_shell_class_part : top_level_shell_class_part_rec;
application_shell_class_part : application_shell_class_part_rec;
end record;

for application_shell_class_part use record at mod implementation_defined;

core_class_part
at 0
range 0 .. core_class_part_size - i;
composite_class_part

at 0

range core_class_part_size .. composite_class_part._size - 1;
shell_class_part
at 0
range composite_class_part_size .. shell_class_part_size - 1;
override_shell_class_part

at 0

range shell_class_part_size .. override_shell_class_part_size - 1;
wm_shell_class_part

at 0)

range override_shell_class_part_size .. wm_shell_class_part_size - 1;
vendor_shell_class_part

at 0

range wm_shell_class_part_size ..

vendor_shell_class_part_size - 1;

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN

transient_shell_class_part
at 0
range vendor_shell_class_part_size ..
transient_sheil_class_part_size - 1;
top_level_shell_class_part
at 0
range transient_shell_class_part_size ..
top_level_shell_class_part_size - {;
application_shell_class_part
at 0
range top._level_shell_class_part_size ..
application_shell_class_part_size - 1;
end record;

type application_shell_class_part_pointer is
access application_shell_class_part_zec;
type application_shell_class_pointer is

access application_shell_class_part;

~-- allocate the class constant

function to_widget_class is new unchecked_conversion(
source => shell_class_pointer,
target => 'idgot-classgz

the_shell_class : constant widget_class :=
to_widget_class (new shell_class_part);

Zunction to_widget_class is new unchecked_conversion(
source => override_shell_class_pointer,
target => widget_class);

the_override_shell_class : constant widget_class :=
to_widget_class (new override_shell_class_part);

function to_widget_class is new unchecked_conversion(
source => wm_shell_class_pointer,
target => widget_class);

the_wm_shell_class : constant widget_class :=
to_vidget_class (new wm_shell_class_part);

function to_widget_class is new unchecked_conversion(
source => vendor_shell_class_pointer,
target => widget_class);

the_vendor_shell_class : constant widget_class :=
to_widget_class (new vendor_shell_class_part);

function to_widget_class is new unchecked_conversion(
source => transient_shell_class_pointer,
target => widget._class);

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 55

the_transient_shell_class : constant widget_class :=
to_wvidget_class (new transient_shell_class_part);

function to_widget_class is new unchecked_conversion(
source => top_level_shell_class_pointer,
target => widget_class);

the_top_level_shell_class : constant widget_class :=
to_widget_class (new top_level_shell_class_part);

function to_widget_class is new unchecked_conversion(
source => application_shell_class_pointer,
target => widget_class);

the_application_shell_class : constant widget_class :=
to_vidget_class (new application_shell_class_part);

end shell_private;

4.5 Pop-Up Widgets

The package specification zt_geometry_management defines the types and subprograms spec-
ified in chapter 6 of [3]. The semantics are unchanged.

package xt_geometry_management is

type xt_geometry_result is

(xt_geometry_yes,
xt_geometry_no,
xt_geometry_almost,
xt_geometry_done);

type xt_stack_mode is
(xt_above, -- Above in x_lib_.a Stack_Node_Type
xt_below, -- Below in x_lib_.a Stack_Node_Type
xt_top.if, -- Top.I? in x_lib_.a Stack_Node_Type
xt_bottom_if, -- Bottom_If in x_lib_.a Stack_Node_Type
xt_opposite, -- Opposite in x_lib_.a Stack_Kode_Type
xt_dont_change); == ot in x_1lidb_.a

subtype xt_geometry_mask is x_windows.boolean_array (0 .. 7);

type xt_widget_geometry is record
request_mode : xt_geometry_mask;
x, y : position;
width, height, border_width : dimension;
sibling : widget;
stack_mode : xt_stack_mode;

end record;

xt_null_geometry_mask : constant xt_geometry_mask :=

]
25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 56

_xt_geometry_mask’(others => false);

xt_cw_x : constant xt_geometry_mask :=

xt_geometry_mask’(0 => true, others => false);
xt_cu_ y : constant xt_geometry_mask :=

xt_geometry_mask’(1 => true, others => false);
xt_cw_width : constant xt_geometry_mask :=

xt_geometry_mask’(2 => true, others => false);
xt_cw_height : constant xt_geometry_mask :=

xt_geometry_mask’(3 => true, others => false);
xt_cv_border_width : constant xt_geometry_mask :=

xt_geometry_mask’(4 => true, others => false);
xt_cw_sibling : constant xt_geometry_mask :=

xt_geometry_mask’(5 => true, others => false);
xt_cw_stack_mode : constant xt_geometry _mask :=

xt_geometry_mask’(6 s> true, others => false);
xt_cv_query_only : constant xt_geometry_mask :s=

xt_geometry_mask’(7 s> true, others => false);

procedure xt_make_geometry_request
(w widget;
Tequest : in out xt_widget_geometry;
reply_return : in out xt_widget_geometry;
Tesult : out xt_widget_geometry);

o

procedure xt_make_resize_request
(v : widget;
width, height ¢ dimension;
width_return, height_return : out dimension;
result : out xt_geometry_result);

procedure xt_move_widget (w : widget;
x, ¥y : position);

procedure xt_resize_vidget (w : widget;
width, height ; dimension;
border_width : dimension);

procedure xt_configure_widget (w : widget;
x, ¥y : position;
width, height : dimension;
border_width : dimension);
procedure xt_resize_window (v : widget);

procedure xt_query_geometry

v : widget;

intended : xt_widget_geometry;
preferred_return : out xt_widget_geometry;
Tesult : xt_geometry_result);

end xt_geometry_management;

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 57

Three procedure types are needed by geometry management. The first is the resize
procedure which is of the previously defined type zt_widget_proc. The remaining two, geom-
etry_manager and query_geometry, are of type zt_geometry_handler:

pseudo_type xt_geometry_handler is
new proc_type(request 1 xt_widget_geometry;
geometry_return : xt_widget_geometry)
return xt_geometry_result;

4.6 Geometry Management

The package specification zt_geometry_management defines the types and subprograms spec-
ified in chapter 6 of [3]. The semantics are unchanged.

package xt_geometry_management is

type xt_gecmetry_result is
(xt_geometry_yes,
xt_geometry_no,
xt_geometry_almost,
xt_geometry_done);

type xt_stack_mode is

- (xt_above, == Above in x_1id_.a Stack_Node_Type
xt_below, == Below in x_lib_.a Stack_Node_Type
xt_top._if, ~= Top_If in x_1lib_.a Stack_Mode_Type
xt_bottom_i¢, -=- Bottom_If in x_lib_.a Stack_Node _Type
xt_opposite, -- DOpposite in x_1ib_.a Stack_Node_Type
xt_dont_change); -- mnot in x_lib_.a

subtype xt_geometry_mask is x_windows.boolean_array (0 .. 7);

type xt_widget_geometry is record
request_mode : xt_geometry_mask;
X, ¥y ¢ position;
width, height, border_width : dimension;
sibling : widget;
stack_mode : xt_stack_mode;

end record;

xt_null_geometry_mask : constant xt_geometry_mask :=
xt_geometry_mask’ (others => false);

xt_CW_X : constant xt_geometry_mask :=

xt_geometry_mask’(0 => true, others => false);
xt_cv_y : constant xt_geometry_mask :=

xt_geometry_mask’(1 => true, others => false);
xt_cw_width : constant xt_geometry mask :=

xt-goomotry_nask’(z => true, others => false);
xt_cv_height : constant xt_geometry mask :=

xt_geometry_mask’(3 => true, others => falsge);
xt_cw_border_width : constant xt_geometry_mask :=

25 January 1990 STARS-RC-UI0LDLD/OL L/

4 THE ADA/XT DESIGN

xt_geometry_mask’(4 => true, others => false);
xt_cw_sibling : constant xt_geometry mask :=
xt_geometry_mask’(5 => true, others => false);
xt_cw_stack_mode : constant xt_geometry_mask :=
xt_geometry_mask’(6 => true, others => false);
xt_cv_query_only : constant xt_geometry_mask :=
xt_geometry_mask’ (7 => true, others => false);

procedure xt_make_geometry_request
(w : widget;
request ¢ in out xt_widget_geometry;
reply_return : in out xt_widget_geometry;
Tesult : out xt_widget_geometry);

procedure xt_make_resize_request
(v : widget;
width, height t dimension;
width_return, height_return : out dimension;
result : out xt_geometry_result);

procedure xt_move_vidget (w : widget;
X, Y : position);

procedure xt_resize_widget (w : widget;
width, height ; dimension;
border_width : dimension);

procedure xt_configure_widget (w : widget;
x, ¥ : position;
width, height : dimension;
border_width : dimension);
procedure xt_resize_window (w : widget);

procedure xt-qpory_?oonotry
v

: widget;
intended : xt_widget_geometry;
preferred_return : out xt_widget_geometry;
result : xt_geometry_result);

end xt_geometry_management;

58

Three procedure types are needed by geometry management. The first is the resize
procedure which is of the previously defined type zt_widget_proc. The remaining two, geom-

etry_manager and query_geometry, are of type zt_geometry_handler.

pseudo_type xt_geometry_handler is .
new proc_type(request ; xt_widget_geometry;
geometry_return : xt_widget_geometry)
return xt_geometry_result;

25 January 1990
4 THE ADA/XT DESIGN

4.7 Event Management

STARS-RC-U1000/001/00

59

The following package specification defines the event management types and subprograms

with semantics as described in chapter 7 of [3].

package xt_event_management is

type xt_event_table is private;

type interval_type is implementation_defined;

type device is implementation_defined;

-~ xt types

subtype xt_input_mask is x_windows.boolean_array (1

xt_im_xevent : constant xt_input_masgk :=
xt_input_mask’(1 => true,
others => false);
xt.im_timer : constant xt_input_mask =
xt_input_mask’(2 => true,
others => false);
xt_im_alternate_input :
xt_input_mask’(3 => true,
others => false);

.. 32);

constant xt_input_mask :=

xt_input_read_mask : constant xt_input_mask :=

xt_input_mask’(4 => true,
others => false);

xt_input_write_mask : constant xt_input_mask :=

xt_input_mask’ (6 => true,
others => false);

xt_input_except_mask : constant xt_input_

xt_input_mask’(6 => true,
others => false);

function xt_app.add_input (app.context
source
condition
proc
client_data

se e oo oo oo

function xt_app_add_timeout (app_context
interval
proc
client_data

procedure xt_remove_timeout(timer :

procedure xt_add_grab (w : widget;

exclusive, spring_

procedure xt_remove_grab (w : widget);

magk :=

application_context;
device;

xt_input_mask;
xt_input_callback_proc;
x_windows.caddr_t)
return xt_input_id;

application_context;
interval_type;
xt_timer_callback_proc;
x_windows.caddr_t)
return xt_interval_id;

oe es s oo

in xt_interval_id);

loaded : boolean);

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 60

. procedure xt_set_keyboard_focus (subtree, descendant : widget);

function xt_call_accept_focus (v : widget;
t : x_windows.time) return boolean;

function xt_app_pending
(app_context : application_context) return xt_input_mask;

procedure xt_app_peek_event (app_context
event_return
event_found

application_context;
out x_event;
out booclean);

procedure xt_app_next_event (app.context
event_return

application_context;
out x_event);

procedure xt_app_process_event (app_context : application_context;
magk ¢ xt_input_mask);

function xt_dispatch_event (event : x_event) return boolean;
procedure xt_app._main_loop (app.context : application_context);

procedure xt_set_sensitive (w
sensitive

: widget;
: boolean);
function xt_is_sensitive (v : widget) return boolean;
procedure xt_app_add_work_proc(app_context : application_context;
‘ proc : xt_work_proc;
client_data : x_windows.caddr_t);
procedure xt_remove_work_proc (proc: xt_work_proc);

procedure xt_add_event_handler

(w : widget;

an_event_mask : event_mask;
non_maskable : boolean;

proc ¢ xt_event_handler_proc;

client_data : x_windows.caddr_t);

procedure xt_remove_event_handler

(w : widget;
an_event_mask : event_mask;
non_maskable : boolean;
proc ¢ xt_event_handler_proc;
client_data : x_windows.caddr_t);

procedure xt_add_rawv_event_handler

(w : widget;
an_event_mask : event_mask;
non_maskable : boolean;

25 January 1990 STAKS-KC-U1000/001/00

4 THE ADA/XT DESIGN 61

proc

xt_event_handler_proc;
client_data g:

x_windows.caddr_t

procedure xt_remove_raw_event_handler

(w : widget;
an_event_mask : event_mask;
non_maskable : boolean;
proc : xt_event_handler_proc;
client_data ¢ x_windows.caddr_t);

function xt_build_event_mask (v : widget) return event_mask;
private
implementation_derined
end xt_event_management;

The following procedures types are defined for event management:

pseudo_type xt_input_callback_proc is

new proc_type(client_data : x_windows.caddr_t;
source ¢ device;
iq : xt_input_id);

pseudo_type xt_timer_callback_proc is
new proc_type(client_data : x_windows.caddr_t;
id ¢ xt_interval_id);
pseudo_type xt_accept_focus_proc is
new proc_type(the_widget : widget;
the_time : x_windows.time)
return boolean;
pseudo_type xt_work_proc is
new proc_type(client_data : x_windows.caddr_t)
return boolean;

pseudo_type xt_expose_proc is
new proc_type(the_widget
the_event
the_region

in out widget;
x_event;
x_region);

pseudo_type xt_event_handler_proc is

new proc_type(the_widget : widget;
client_data : x_windows.caddr_t;
the_event : x_windows.events.event);

4.8 Callbacks

The package specification zt_callbacks defines the types and subprograms associated with
callbacks. The semantics of the subprograms are as described in chapter 8 of [3]. In the
Ada specification objects of type zt_callback_list differ from the C specification in that lists

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 62

should not be null terminated. For this reason we have changed the C procedure names for
XtAddCallbacks and XtRemoveCallbacks to zt.add.callback_list and zt_remove_callback_list
respectively. The functionality of these procedures remains the same.

package xt_callbacks is
type xt_callback_status is
(xt_callback_no_list,
xt_callback_has_none,
xt_callback_has_some);

type xt_callback_rec is record
callback : xt_callback_proc;
closure : x_windows.caddr_t;
end recoxd;

type xt_callback_list is array (natural range <>) of xt_callback_rec;
type xt_callback_list_ptr is access xt_callback_list;

procedure xt_add_callback (w
callback_name
callback
client_data

widget;

string;
xt_callback_proc;
x_windows.caddr_t);

procedure xt_add_callback_list (w : widget;
callback_name : string;
callbacks : xt_callback_list);

widget;

string;
xt_callback_proc;
x_windows.caddr_t);

procedure xt_remove_callback (w
callback_name
callback
client_data

oo se oe ge

widget;
string;
xt_callback_list);

procedure xt_remove_callback_list (w
callback_name
callbacks

procedure xt_remove_all_callbacks (w : widget;
- callback_name : string);

procedure xt_call_callbacks (w : widget;
callback_name : 8iTing;
client_data : x_windows.caddr_t);
function xt_has_callbacks

(w : widget;

callback_name : string) return xt_callback_status;

end xt_callbacks;

The procedure type zt_callback_proc is defined in the following package specification:

25 January 1990 D LAKD-KLUVIVW/WILE/W

4 THE ADA/XT DESIGN 63
pseudo_type xt_callback_proc is
nev proc_type(the_widget : in widget;
client_data : x_windows.caddr_t;
call _data : x_windows.caddr_t);

4.9 Resource Management
4.9.1 Interface to Resources

A difficult problem arose in specifying the interface to argument lists for several of the re-
source management subprograms. The C model, lacking function overloading, creates lists of
untyped data (lists of many different types stored as a single type). This can be done in Ada
but at the cost of requiring application and widget programmers to do unchecked_conversions
to the list type. A solution is to provide a generic package which provides functions to relieve
programmers of the conversion task.

The generics solution is not problem free. In implementing the generics, we discovered
that some compilers (TeleSoft) do not permit unchecked_conversion of unconstrained types,
and retrieving values of unconstrained types may not be possible. Arrays in Ada (this is
generally true with any unconstrained Ada type) may have additional bytes added to the
array to provide indexing and size information. In retrieving data the intrinsics do not
know the type of the data, and retrieve data based solely on location and size. The Telesoft
compiler added three words to the front of unconstrained arraye (which are not coun‘ed in
the ’length attribute) making it impossible to retrieve the value without making assumptions
about a specific compiler’s handling of arrays.

The Ada/Xt implementation imposes the additional restriction: resource types which are
unconstrained types such as arrays, and variant and discriminant records, are not supported.
One unconstrained type, string, is required in Xt, but since the intrinsics know about string
types a test for a resource of type siring is made when retrieving a resource value. String
types have separately defined subprograms for setting and retrieving values.

The solution also falls short in retrieving resource values because it requires the user to
use ’address to provide a memory address for storing the retrieved data. This allows the
intrinsics to simply copy data (of an unknown Ada type) from the resource field to a user’s
local data space without needing to know about the underlying type. However, this is an
unfortunate use of system-dependent programming, and is in fact a bit “unsafe.”

Another approach to building argument lists might be to set resource values individually,
but not have them take effect immediately. A new activate procedure could then initiate the
changes to the actual widget resources. This approach fails because the design of Xt permits
use of the set_values_hook function for setting subpart resource values. Individual setting of
resource values requires changing the interface to the set_values_hook procedure which is not

desirable. o)
The following package specifications define the generic interface to these untyped lists,

25 January 1990 STARS-RC-01000/00 1/0U

4 THE ADA/XT DESIGN

and subprograms for setting and retrieving string resource values.

package resource_values is
subtype xt_arg_val isx_windows.caddr_t;
type xt_arg is
record
name : xt_string;
value : xt_arg.val;
end record;
type arg_list is array (natural range <>) of xt_arg;
type arg_list_ptr is access arg_list;

type xt_convert_arg is

record
address_mode : xt_address_mode;
address_id : x_vindows.caddr_¢t;
size : cardinel;

end record;
type xt_convert_arg_list is array (natural range <>) of xt_convert_arg;

type xrm_value is
Tecord
size : x_windows.x_integer;
address : x_windows.caddr_t;
end record;
type xrm_value_ptr is access xrm_value;
type xrm_value_ptr_list is array (natural range <>) of xrm_value_ptr;

procedure xt_set_arg (arg : in out xt_arg;
name : in string;
value : in system.address);

procedure xt_set_arg (arg : in out xt_arg;
name : in string;
value : in string);

function set_convert_arg(mode : in xt_address_mode;
size : in cardinal;
Tes : in system.address)
return xt_convert_arg;

function set_xrm_value(size : cardinal;
res : systom.address) return xrm_value;

function xt_merge_arg_lists (argsi, args2 : arg.list) return arg_list;

generic
type resource_type is private;
resource_size : in out cardinal;
package resource_interface is
procedure xt_set_arg(arg : in out xt_arg;
name : in string;
Tes : in resource_type);

64

25 January 1990 STARS-RC-O100U/0UV1/WV

4 THE ADA/XT DESIGN 65

function set_convert_arg(mode : xt_address_mode;
Tes : resource_type)
return xt_convert_arg;

function set_convert_arg(position : in integer;
Tes : Tresource_type)
Teturn xt_convert_arg;

function init_xrm_resource(name : in string;
class : in string;
rtype : in string;
size : in cardinal;

offset : in cardinal;

dtype in string;

daddr in resource_type)
return Xrm_resource_ptr;

end resource_interface;
end resource.values;

4.9.2 Representation of Resource Lists

Another major difference of the C and Ada specifications in resource management is the
representation of resource lists. In C resource lists are initially represented as XtResource
with string values for the various resource names. This is, in part, due to C’s inability to
execute conversion functions during aggregate array initialization. Ada can do the conversion
to XrmResource during aggregate initialization. Furthermore, C does an in place conversion
of the resource list in the widget class data structure which violates Ada’s strong typing.
As a result, the Ada specification defines resource lists to be of type zrm_resource_list in the
widget class structure and provides conversion functions to create the proper lists. Several
conversion functions are provided to allow conversion to the zt_resource type.

type xt_resource is

record
TesOuUrce_name ¢ xt_string;
Tesource_class ¢ xt_string;
Tesource_type : xt_string;
resource_size, resource_offset : cardinal;
default_type xt_string;

default_address x_windows.caddr_t;

end record;
type xt_resource_ptr is access xt_resource;

type xrm_resource is
record
Yesource_name : x_windows.xrm_name;
resource_class : x_windows.xrm_class;

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 66

resource_type
resource_size, resource_offset
default_type
default_address
end record;
type xrm_resource_ptr is access xrm_resource;

x_windows.xrm_quark;
cardinal;
x_windows.xrm_quark;
x_windows.caddr_t;

type xt_resource_list is array (natural range <>) of xt_resource;
type xt_resource_list_ptr is access xt_resource_list;

type xrm_resource_list is
array (natural range <>) of xrm_resource_ptr;
type xrm_resource_list_ptr is access xrm_resource_list;

function create_xrm_resource (resounrce : xt_resource)
Teturn xXrm_resource;

function create_xrm_resource_list
(rlist : xt_resource_list) return xrm_resource_list_ptr;

function create_xt_resource_list
(zrlist : xrm_resource_list) return xt_resource_list_ptr;

function create_xt_resource
(resource : xIm_resource) return Xt_Tresource;

function xt_database
(the_display : x_windows.display) return xrm_database;

procedure xt_get_resource_list
(class widget_class;
resources_return : out xt_resource_list_ptr);

procedure xrm_get_resource_list
(class : widget_class;
resources_return : out Xrm_resource_list_ptr);

4.9.3 Resource Management Package Specification

The package specification zt_resource.management defines the remaining resource manage-
ment subprograms. These coincide with the definitions in chapter 9 of (3] except for the
use of zrm_resource lists instead of zf_resource_lists. The procedure zt_get_resource.list is
overloaded to supply either the list in “quarked” form or in string form.

package xt_resource_management is

type xt_address_mode is
(xt_address,
xt_base_offset,
xt_immediate,
xt_resource_string,

25 January 1990 STARS-RC-UL10DD/WL LW

4 THE ADA/XT DESIGN 67

‘ ~ xt_resource_quark);

type xt_convert_arg is

record
address_mode : xt_address_mode;
address_id : x_windows.caddr_t;
size : cardinal;

end recorxd;

procedure xt_get_subresources (w : widget;
base : x_windows.caddr_t;
name : string;
class : string;
Tesources : xrm_resource_list;
args : arg_list);
procedure xt_get_application_resources (w : widget;
base ¢ x_windows.caddr_t;
resources : xrim_resource_list;
args ¢ arg_list);

procedure xt_string_conversion_warning (src, dst_type : string);

procedure xt_app_add_converter

(app_context : application_context;
from_type, to_type : string;
converter : Xt_converter_proc;
converter_args : xt_convert_arg._list);
. procedure xt_convert (w : widgev;
from_type : string;
from ¢ xrm_value_ptr;
to_type : string;
to : out xrm._value_ptr);
procedure xt_direct_convert (converter : xt_converter_proc;
args ¢ xrm_value_ptr_list;
from : xrm_value_ptr;

to_return : out xrm_value_ptr);

procedure xt_get_values (v : widget;
args : arg_list);

procedure xt_get_subvalues (base : x_windows.caddr_t;
Tesources : Xrm_resource_list;

args : arg.list);

procedure xt_set_values (w : in out widget;
args : arg_list);

procedure xt_set_subvalues (base : x_windows.caddr_t;
resources : xrm_resource_list;

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 68

args : arg._list);

end xt_res ource_management;

The following procedures types are defined for resource management:

pseudo_type xt_args_proc is
new proc.type(the_widget : in out widget;
the_arglist : arg_list);

pseudo_type xt_set_value_func is
new proc_type(current_widget : in widget;
Tequest _widget : in widget;
nev_vidget : in widget)
return boolean;

psoudo.type xt_almost_proc is
new proc_type(the_widget
new_widget_return
Tequest, reply

in out widget;
out widget;
in out xt_widget_geometry);

oo oe oo

pseudo_type xt_args_func is
new proc_type(the_widget

in widget;
the_arglist

arg_list) return boolean;

pseudo_type xt_resource_default_proc is
new proc_type(the_widget
offset
value

in out widget;
in cardinal;
in out xrm_value);

se se se

pseudo_type xt_converter_proc is
new proc_type(args
from

to

in xrm_value_list;
in xrm_value;
out xrm_value);

4.10 Translation Management

The translation management subprograms and data types are specified in the following
package and retain the same semantics as specified in chapter 10 of [3].

package xt_translation_management is
type xt_translations is implementation_defined;
type xt_accelerators is implementation_defined;

type xt_action_rec is
record
action_name : xt_string;
action_proc : xt_action_proc;
end record;]
type xt_action_list is array (natural range <>) of xt_action_rec;
type xt_action_list_ptr is access xt_action_list;

25 January 1990 D 1 AKD-KL~U LU /W

4 THE ADA/XT DESIGN 69

procedure xt_app_add_actions (app_context

“pplication_context;
actions

xt_action_list);

function xt_parse_translation_table
(table : string) return xt_translations;

procedure xt_augment_translations (w : widget;
translations : xt_translations);
procedure xt_override_translations (w : widget;

translations : xt_translations);
procedure uninstall_translations (v : widget);

function xt_parse_accelerator_table
(table : string) return xt_accelerators;

procedure xt_install_accelerators (destination, source : widget);

procedure xt_iniiall_all_accelerators (destination, source : widget);

procedure xt_set_key_translator (the_display : x_windows.display;

proc : xt_key_proc);
procedure xt_translate_keycode
(the_display : x_windows.display;
the_keycode : x_windows.keycode;
some_modifiers ¢ modifiers;
modifiers_return : out modifiers;
keysym_return : out x_windows.key_sym);

procedure xt_register_case_converter
(the_display : x_windows.display;
proc ! xXt_case_proc;
start, stop : x_windows.keyboard.key_sym);

procedure xt_convert_case
(the_display
some_keysym
lower_return, upper_return

x_windows.display;
x_windows.key_synm;
out x_vindows.key_sym);

se oo oo

end xt_translation_management;
The following procedure types are specified for translation management:

pseudo_type xt_action_proc is

new proc_type(the_widget in out widget;

the_event : in x_windows.x_event;
parans : in string;
num_params : cardinal);

pseudo_type xt_string_proc is
new proc_type(the_widget : in out widget;

25 January 1990 D1 AKD-KL-U LAY /W

4 THE ADA/XT DESIGN 70

str : xt_string);

pseudo_type xt_key_proc is

new proc_type(the_display x_windows .display;

the_keycode : x_windows.keycode;
some_modifiers : modifiers;
modifiers_return : out modifiers;
keysym_return : out x_windows.key_sym);

pseudo_type xt_case_proc is
new proc_type(the_keysym : in x_windows.key_sym;
lower_return : out x_windows.key_sym;
upper_return : out x_windows.key_sym);

4.11 Utility Functions

Some differences exist in the utility functions due to language differences. For example,
the C function XtNumber is not needed in Ada because Ada provides the ’length array
attribute. The memory management functions may not be used in the same way as in a
C implementation since Ada has new for allocating storage for its pointer types. For types
the intrinsics does not know about (widgets), memory management functions are necessary.
The memory management functions return an implementation defined type which should be
some form of address to the allocated storage. The remaining subprograms provide the same
functionality as defined in chapter 11 of [3].

The following types are assumed to be visible to the utilities pachge, and could be
defined in this package:

type ptr is inplomontltzon defined;
type string_list is array (natural range <>) of xt_string;

The following package defines the utility interfaces for Ada/Xt:
package xt_utilities is
-- translating strings to widget instances:

function xt_name_to_widget (reference : widget; '
names : string) return widget;

-- managing memory usage:
function xt_malloc (size : cardinal) return ptr;
function xt_calloc (num, size : cardinal) return ptr;

function xt_realloc (p : ptr;
num : cardinal) return ptr;

25 January 1990 D 1 AKD-KL-U1UW/W /W

4 THE ADA/XT DESIGN 71

procedure xt_free (p : in out ptr);
~- sharing graphics contexts:

function xt_get_gc (w : widget;
value_mask : xt_gc_mask;

values x_windows.x_gc_values)
return x_windows.gc;
~- is this list or array?

procedure xt_release_gc (w : widget;
the_gc : x_windovs.gc);

~- managing selections:

procedure xt_app.set_selection_timeout

(app_context : application_context;
timeout ¢ x_windows.time);

function xt_app.get_selection_timeout
(app_context : application_context) return x_windows.time;

procedure xt_get_selection_value

(w : widget;
selection, target : x_windows.atom;
callback : xt_selection_callback_proc;
client_data : x_windows.caddr_t;
timestamp ¢ x_windows.time);
procedure xt_get_selection_values
(v ! widget;
selection : x_windows.atom;
targets : x_windows.atom_list;
callback ! xt_selection_callback_proc;
client_data : x_windows.caddr_t;
timestamp : x_windows.time);
function xt_own_selection
(w : widget;
selection x_windows.atom;

timestamp x_vindows.time;

convert_proc : xt_convert_selection _proc;
lose_selection : xt_lose_selection_proc;

done_proc : xt_selection_done_proc) return boolean;

procedure xt_disown_selection(w : widget;
selection : x_windows.atom;
timestamp : x_windows.time);
~-- merging events into a region

procedure xt_add_exposure_to_region

25 January 1990 D 1 AKD-KU-ULWA/W L/ W
4 THE ADA/XT DESIGN 72

(event
region

== translating widget coordinates

x_windows.event;
x._windows.region);

procedure xt_translate_coords (w : widget;
X, ¥ : position;
rootx_return : out position;
rooty.return : out position);

-- translating a window to a widget
function xt_window_to_widget
(the_display : x_vindowc.di:plag;
the_window : x_windows.window) return widget;

== handling errors

function xt_app.get.error_database
(app_context : application_context) return x_windows.xrm_database;

procedure xt_app_get_error_database_text

(app._context : application_context;
name, restype, class : string;
default : string;
buffer_return : in out string;
database : x_windows.xrm_datadase);
procedure xt_app_set_error_msg_handler
. (app_context : application_context;
msg_handler : xt_error_msg_handler_proc);

procedure xt_app.error_msg (app_context : application_context;
name, restype, class, default : string;
params : in out string_list);

procedure xt_app_set_varning msg_handler
(app_context : application_context;
msg_handler : xt_error_msg_handler_proc);

procedure xt_app.warning_msg (app_context : application_context;
name, restype, class, default : string;
params : in out string_list);

procedure xt_app.set_error_handler
(app._context : application_context;
handler : xt_error_handler_proc);

procedure xt_spp_error (app_context : application_context;
message : string);

procedure xt_app_set_warning_handler

25 January 1990 STARS-RC-U1000/001/00
4 THE ADA/XT DESIGN 73

. (app_context : application_context:
handler : xt_error_handler_proc);

procedure xt_app_warning (app._context : application_context;
message : string);

end xt_utilities;

The following procedure types are defined for use by the utilities:

pseudo_type xt_convert_selection_proc is
nevw proc_type(the_widget : widget

selection : x_windows.atom;

target : x_windows.atom;
type_return : x_windows.atom;
value_return : out x_windows.caddr_t;
length_return : out cardinal;
format_return : out x_windows.x_integer)

return boolean;

pseudo_type xt_lose_selection_proc is
new proc_type(the_widget : in out widget;
selection : in out x_windows.atom;
target ¢ in out x_windows.atom);

pseudo_type xt_selection_callback_proc is
new proc_type(the_widget in out widget; :

client_data ¢ in x_windows_caddr_t;
selection : in out x_windows.atom;

. selection_type : in x_windows.atom;
value : x_windows.caddr_t;
length : in cardinal);

pseudo_type xt_error_msg_handler_proc is
new proc_type(resource_name : string;
resource _type : string;
resource_class : string;
default_p : string;
params : string_list);

pseudo_type xt_error_handler_proc is
new proc_type(message : string);

25 January 1990 ‘ D LAKD-KL-U1UW/WI /W
5 APPENDIX A: CASE-STATEMENT PROCEDURE TYPES 74

5 Appendix A: Case-Statement Procedure Types

with system; use system;
package body callback_mechanism is

type callback_mapped_id is
range callback_id_range’first .. callback_id_range’last * NUM_CALLBACKS;

unmapped_id: constant callback_mapped_id:= callback_mapped_id’first;

callback_id_map : array(callback_id_range) of callback_mapped_id:=
(others => unmapped_id);

starting_at: callback._mapped_id:= callback_mapped_id’first + 1;
next_mapped_id: callback_mapped_id:= starting_at;

package body callback_ids is
next_id: callback_id_range:= callback_id_range’first ¢ 1;

== Teturn & unique callback id
function next_callback.id return callback_id_range is
i: callback_id_range:= next_id;
begin
next_id:= next_id + 1;
Teturn i;
exception
when constraint_error =>
raise CALLBACK_RANGE_ERROR;
end next_callback_id;

-- select the callback id from the callback object
function to_callback_id_range(id: callback_id_type)
return callback_id_range is
begin
return id.the_callback_id;
end to_callback_id_range;

end callback_ids;

-- these procedures should never be called, so raise exception
procedure default_next_call_back(id: callback_id_type; s: string) is

begin
raise CALLBACK_CALL_ERROR;
end;
procedure default_callback(s: string) is
begin

raise CALLBACK_CALL_ERROR;
end default_callback;

25 January 1990 O 1 AKD KLU LA/ W /W

5 APPENDIX A: CASE-STATEMENT PROCEDURE TYPES 75

package body callbacks is
-~ each instantiation of callbacks has a distinct id range
lov_range, high_range: callback_mapped_id:= callback_mapped_id’last;

procedure callback (id : callback_id_type; s: string) is
«=- gubtype assignment allows use of case statement
subtype callback_range is callback_mapped_id range 1 .. NUM_CALLBACKS;
mapped_id: callback_mapped_id:=
callback_id_map(to_callback_id_range(id));
index: callback_range;
begin
if mapped_id in low_range .. high_range then
index:= mapped_id - low_range + 1;
case index is
when 1 => cbi(s); -- call the actual callback
when 2 => cb2(s);
when 3 &> ¢b3(s);
end case;
else -- in the range of a previous instantiation
next_callback(id, s);
end if;
end callback;

begin ~- initialize
lov_range:= starting_at;
high_range:= lowv_range + NUM_CALLBACKS - 1;
starting_at:= high_range + 1;

-~ do this if .. then code for each formal callback
if cbi’address /= default_callback’address then
if id1 /= null_id then
if callback_id_map(to_callback_id_range(idi)) /= unmapped_id then
raise CALLBACK_INSTALL_ERROR; -- valid procedure, duplicate id
else
callback_id_map(to_callback_id_range(idi)):= next_mapped_id;
end if;
else
raise CALLBACK_INSTALL_ERROR; -- valid procedure, null id
end if;
end if;
next_mapped_id:= next_mapped_id + 1;

if cb2’address /= default_callback’address then
if id2 /= null_id then
if callback_id_map(to_callback_id_range(id2)) /= unmapped.id then
raise CALLBACK_INSTALL_ERROR; -- valid procedure, duplicate id
else
callback_id_map(to_callback_id_range(id2)):= next_mapped_id;
end if;
else
raise CALLBACK_INSTALL_ERROR; -- valid procedure, null id
end if;

25 January 1990 S1TAKD-KLC-UIUWU/WI/W

5 APPENDIX A: CASE-STATEMENT PROCEDURE TYPES 76

end if;
next_mapped_id:= next_mapped_id + 1;

if cb3’address /= default_callback’address then
it id3 /= null_id then
if callback_id_map(to_callback_id_range(id3)) /= unmapped_id then
zaise CALLBACK_INSTALL_ERROR; ~-- valid procedure, duplicate id

else
callback_id_map(to_callback_id_range(id3)):= next_mapped_id;
end if;
else
raise CALLBACK_INSTALL_ERROR; -- valid procedure, null id
end if;
end if;

next_mapped_id:= next_mapped_id + 1;
end callbacks;

end callback_mechanism;

4d January iyyu O L AR LU~V IVW/ W L/ W
6 APPENDIX B: SYSTEM-DEPENDENT PROCEDURE TYPES 77

6 Appendix B: System-Dependent Procedure Types
package body xt_procedure_types is
package body xt_widget_class_procs is

== private data and functions

bad_procedure_reference : exception;

xt_inherit_constant_record : xt_widget_class_proc_rep;
xt_inherit_constant : xt_widget_class_proc;

=- arg_record is a record encapsulation for arguments to ada

~= functions. Encapsulating as a record permits us to write

-- exactly one foreign language dispatcher, which will call

== an intermediary Ada subprogram by pointer which will in turn
-- call the Ada subprogram of an arbitrary parameter profile.

type arg_record is record

the_widget_class : widget_class;

== other parareters to the call function go here...
end record;
type arg_record_pointer is access arg_record;

arg_record_buffer : arg_record; -- global arg_record for use as
== argument passing vehicle. Could
-- also make local to procedure call,
== but then would be on stack. 1Is
-~ that better or worse?

procedure default_xt_widget_class_proc(the_widget_class : widget_class) is
begin

raise bad_procedure_reference;
end;

-- type converters for converting to/from system.address

function address_to_arg_record_pointer is
new unchecked_conversion(_
source => system.address, target => arg_record_pointer);

function xt_widget_class_proc_to_address is
new unchecked_conversion(
source => xt_widget_class_proc,
target => system.address);

-- visible functions

function xt_inherit_widget_class_proc return xt_widget_class_proc is
begin

25 January 1990 D L AKD-KU~U1IUWN/WI L /W

6 APPENDIX B: SYSTEM-DEPENDENT PROCEDURE TYPES 78

return xt_inherit_constant;
end;

procedure call(
the_proc_id : xt_widget_class_proc; the_widget_class : widget_class) is

begin

-- construct the argument passing buffer
arg_record_buffer.the_widget_class := the_widget_class;

=~= call the C or assembler or ... routine which calls the function
dispatch_interfaces.call_ada(
xt_widget_class_proc_to_address(the_proc_id),
arg_record_buffer’address);
end;

package body procedure_pointer is

== procedure intermediary_caller is the actual subprogram which
-- invokes the user suppliad function. The address of intermediary_caller
-- is put into the id returned by the instantiation.

procedure intermediary_caller(
-- the_proc_id : xt_widget_class_proc;
arg_record_address : system.address) is

an_arg_record_pointer : arg_record_pointer :e
address_to_arg_record_pointer(arg_record_address);
begin
-- "the_proc" is the generic procedure
the_proc(an_arg_record_pointer.the_vidget_class);
end;

begin
-- Vads version does not need to save context information
-- for intermediary_caller
declare
temp_xt_widget_class_proc_rep : xt_widget_class_proc_rep;
begin
dispatch_intorf&cos.savo_onvironmont_contoxt(
temp_xt_wvidget_class_proc_rep’address);
temp_xt_vidget_class_proc_rep.proc_address :=
intermediary_caller’address;
proc_id :=
new xt_vidgot-clnll_proc_rop’(tomp_xt_vidgot_class_proc_rop);
end;
end procedure_pointer;

begin
xt_inherit_constant_record.proc_address :=
xt_inherit_widget_class_proc’address;
xt_inherit_constant :=

25 January 1930 O L AKD-KU LA/ L /W

6 APPENDIX B: SYSTEM-DEPENDENT PROCEDURE TYPES

new xt_widget_class_proc_rep’ (xt-inherit_constant_record);
end xt_widget_class_procs;

-- other procedure type packages...

end xt_procedure_types;

with system; use system;
package dispatch_interfaces is

-- Dispatch_interfaces provides the entries for assembler or C or ...
-- code which saves subrogram environment data and invokes Ada subprograms
== via their address.

procedure call_ada(_
the_proc_descriptor : system.address;
the_arg._descriptor : system.address);

pragma interface (C, call_ada);
procedure save_environment_context(the_proc_descriptor : system.address);
pragma interface (C, save_environment_context);

end dispatch_interfaces;

/* the C code for VADS, TeleSoft, and Tartan, which invokes the subprograms
via their addresses */

typedef void (*Proc)();
typedef struct _proc_descriptor {
Proc p;
/*
ALSYS data fields
int gd;
int tcb;
int profile;
./

} ProcDescriptorRec, *ProcDescriptor;

void call_ada(pd, arg)
ProcDescriptor pd;
char »arg;

{

/* Alsys version of call_ada is assembler which restores subprogram

environment context, and passes the argument via the data register dO.

For VADS, etc., the call stack is used to pass arguments, and
a simple JSR will suffice. ®/
(‘(pd->p§)(ug);

79

25 January 1990 D L AKD-RUAMAAAN LW

6 APPENDIX B: SYSTEM-DEPENDENT PROCEDURE TYPES 80

void save_environment_context(pd)
ProcDescriptor p4d;

/* null body for VADS, TeleSoft, and Tartan. s/

2> January 1Y%

7 APPENDIX C: SIMPLE WIDGET DEFINITION

D1LARI-KLU-VIWANWIL/WY

81

7 Appendix C: Simple Widget Definition

Simple Widget: Public Pseudo-Type

with intrinsics; use intrinsics;
with core_public; use core_public;
pragma elaborate(intrinsics);
package simple_public is

== 1) resources documentation:

-= Name Class

-- background Background
-- border BorderColorx
~= borderWidth BorderWidth
-= Cursor Cursor

-= destroyCallback Callback

== height Beight

-= insensitiveBorder Insensitive

-=- mappedWhenManaged NappedWhenManaged

== gsensitive Sensitive
~- width Width

--x Position
-y Position

=~ 2) define constants for new resources.

xt_n_cursor : constant
xt_c_cursor : constant
xt_n_insensitive_border : constant
xt_c_insensitive_border : constant

-- 3) define application interface

string
string
string
string

Pixel
Dimension
Cursor
Pointer
Dimension
Pixmap
Boolean
Boolean
Dimension
Position
Position

Default Value
ItDefaultBackground
ItDefaultForeground
1

None

NULL

0

Gray

True

True

0

o]

0

Can we use enumeration and ’image?

:s cursor®;
:= “Cursor";

:= *"ingensitive_border";
:s “Ingensitive";

to types and constants for intrisics use:

subtype simple_widget is core_widget;

subtype simple_class is core_class;

function the_simple_class return simple_class;

-~ 3a) define application type conversion operations

-- 4) define public entries to simple_widget operations:

procedure foo(w : simple_widget); -- demonstration only

-- NONE
end simple_public;

25 January 199U O L AKD-KLU-UVIUWI/WIL/W

7 APPENDIX C: SIMPLE WIDGET DEFINITION 82

Simple Widget: Private Actual-Type

with intrinsics; use intrinsics;

with renamed_xlib_types; use renamed_x1lib_types;
with x_windows;

with system;

with compiler_dependent;

with unchecked_conversion;

== superclass context
with core_private; use core_private;

package simple_private is

use xt_ancillary_types;

use xt_procedure_types.xt_realize_procs;
use xt_geometry_management;

use xt_resource_management;

use xt_translation_management;

simple_part_rec_size : constant cardinal := 64;
type simple_part_rec is record
the_cursor : x_windows.cursors.cursor;
insensitive_border : x_windows.pixmap;
end record;

simple_widget_size : constant cardinal :=
core_part_size + simple_part_rec_size;

type simple_widget_rec is record
core_part : core_private.core_part;
simple_part : simple_part_rec;

end record;

for simple_widget_rec use recoxrd at mod 2; -- alsys requires "2"

core_part

at 0

range 0 .. core_part_size - 1;

simple_part

at 0 .

range core_part_size .. core_part_size + simple_part_rec_size - {i;
end record;

type simple_part_pointer is access simple_part_rec;
type simple_widget_pointer is access simple_widget_rec;

simple_class_part_rec_size : constant cardinal := 32;

type simple_class_part_rec is record
is_change_sensitive : xt_realize_proc;

end record;

type simple_class_part is record

4> January 1YYV D L ARD RV LAN/ N LW

7 APPENDIX C: SIMPLE WIDGET DEFINITION 83

. core_class_part : core_private.ctre_class_part;
simple_class_part : simple_class_part_rec;
end record;

for simple_class_part use record at mod 2;

core_class_part

at 0

range 0 .. core_class_part_size - 1;

simple_class_part

at 0

Tange core_class_part_size ..

core_class_part_size + simple_class_part_rec_size - 1;

end recoxd;

type simple_class_part_pointer is access simple_class_part_rec;
type simple_class_pointer is access simple_class_part;

== allocate the class constant
function to_widget_class is new unchecked_conversion(
source => simple_class_pointer,
target => widget_class);

the_simple_class : constant wvidget_class :=
to_widget_cless (new simple_class_part);

end simple_private;

AD January 1990 W ASMNI AN VAV UV A UL

7 APPENDIX C: SIMPLE WIDGET DEFINITION 84

. Simple Widget: Public Pseudo-Type Implementation

-- superclass context
with core_public; use core_public;
with simple_private; use simple_private;

with x_windows; use x_windows;

with unchecked_conversion;

with system;

with renamed_xlib_types; use renamed_xlib_types;
with compiler_dependent;

with text_io;

pragma elaborate (simple_private);
pragma elaborate (core_public);
pragma elaborate (compiler_dependent);

pragma elaborate(text_io);
package body simple_pudblic is

use xt_ancillary_types;
use xt_procedure_types.xt_widget_class_procs;
uUse resource_manager;

== type conversion operations:
function to_simple_class is new unchecked_conversion(
source => gimple_class_pointer,

. target => gimple_class);

function to_simple_widget_pointer is new unchecked_conversion(
source => gimple_widget,
target => simple_widget_pointer);

function to.simple_class_pointer is new unchecked_conversion(
source => widget_class,
target => simple_class_pointer);

-~ global objects:
init_proc : xt_widget_class_proc;
simple_class_constant : constant simple_class_pointer :=
to_simple_class_pointer (simple_private.the_simple_class);

-~ procedures for the class structure:)
procedure simple_class_part_initialize(wc : widget_class) is
begin

stoxt_io.put_lino("simplo class clags part initialization");

end;

-~ visibile operations:

L9 Jalludly 177V [S YW VIV LY AN VIRV V. V7 VIVIVIV.V)

7 APPENDIX C: SIMPLE WIDGET DEFINITION 85

function the_simple_class return siﬁblo-class is
begin

return simple_class (simple_private.the_simple_class);
end;

procedure foo(w : simple_widget) is
b ;pp : simple_widget_pointer := to_simple_widget_pointer(w);
egin

spp.core_part.managed := xt_ancillary_types.xt_true;
end;

begin

declare
== procedure instantiations:
package init_procs is new procedure_pointer(
proc_id => init_proc,

the_proc => simple_class_part_initialize);
begin

simple_class_constant.all := (

core_class_part => (
superclass => core_public.the_core_class,
class_name => null,
widget_size => simple_widget_size,
class_initialize => null,
class_part_initialize => init_proc, -- non-defaulted
class_inited => xt_false,
initialize => null,
initialize_hook => null,
realize => null,
actions => null,
resources=> null,
the_xrm_class=> xrm_class’first,
compress_motion => xt_false,
compress_exposure => xt_false,
compress_interleave => xt_false,
vigible_interest => xt_true,
destroy => null,
resize => null,
expose => null,
sot_values => null,
set_values_hook => null,
set_values_almost => null,
get_values_hook => null,
accept_focus => null, -- this should be =*_func
version => xt_version_type’first,
callback_private => null,
tm_table => null,
query_geometry => null, -- should be *_func

25 January 1990 STARD-RC-U10LI/UIL/W

7 APPENDIX C: SIMPLE WIDGET DEFINITION 86

‘ display_accelerator => null,
extension => caddr_t(compiler_dependent.null_address)),
simple_class_part => (
is_change_sensitive => null));
end;
end simple_public;

25 January 1990 S 1 AKS-RC-01000/001/00

REFERENCES 87

References

[1] Adele Goldberg and David Robson. Smalltalk-80 The Language and Its Implementation.
Addison-Wesley, 1983.

[2] Hewlett-Packard. Programming with the xrlib user interface toolbox, 1988.

[3] Joel McCormack, Paul Asente, and Ralph R. Swick. X toolkit intrinsics - ¢ language x
interface, 1989. X Version 11, Release 3.

[4] National Institute of Standards and Technology. The user interface component of the
applications portability profile, 1989. Draft FIPS.

[5] Andrew J. Palay, Fred Hansen, Mike Kazar, Mark Sherman, Maria Wadlow, Thomas
Neuendorffer, Zalman Stern, Miles Bader, and Thom Peter. The andrew toolkit - an
overview. In Proceedings USENIX Technical Conference, Winter 1988.

[6] Robert W. Scheifler and Jim Gettys. The x window system. ACM Transactions on
Graphics, 5:79-109, April 1986.

[7] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

[8] Kurt C. Wallnay and Robert Smith. Ada interfaces to x window system: Analysis
and recommendations. Technical Report SDRL Q14-02021-D, STARS Technical Report,
April 1989.

